
OHI Components -
Common Features
Guide

March 07, 2016

Copyright © 2016, Oracle and/or its affiliates
All rights reserved

OHI Components - Common Features Guide 1

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

License Restrictions Warranty/Consequential Damages Disclaimer
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are
protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy,
reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

Warranty Disclaimer
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please
report them to us in writing.

Restricted Rights Notice
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government
customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation
and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the
restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government
contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc.,
500 Oracle Parkway, Redwood City, CA 94065.

Hazardous Applications Notice
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or
hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures
to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware
in dangerous applications.

Trademark Notice
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are
trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

Third Party Content, Products, and Services Disclaimer
This software or hardware and documentation may provide access to or information on content, products, and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party
content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

OHI Components - Common Features Guide 2

Table of Contents

1 Data Model 6
1.1 Activity and Data File Set Model 6

1.1.1 Activity Model 6

1.1.2 Data File Set Model 7

1.2 Translation 8

1.2.1 Concepts 8

1.2.1.1 Supported languages 9

1.2.1.2 Seed Data 9

1.2.2 Use Cases 10

1.2.2.1 Installation in English 10

1.2.2.2 Installation in English and French 10

1.2.2.3 Translation of Seed Data 11

1.2.2.4 Translation of messages one by one 11

1.2.2.5 Translation boilerplate entries one by one 11

1.2.2.6 Bulk translation 12

1.2.2.7 Reinstallation 12

1.2.2.8 Creation of Business Data 12

1.2.2.9 Translation of Business Data 12

2 Integration Concepts 14
2.1 Integrating with OHI Components Applications 14

2.2 Auditing and Exception Handling 14

3 Soap Integration Points 16
3.1 Attribute Handling 16

3.1.1 Single Value Attributes 16

3.1.1.1 Amount and Currency 17

3.1.2 Non Time Valid Details 17

3.1.3 Time Valid Details 17

3.1.3.1 Parent Record Creation 18

3.1.3.2 Parent Record Update 18

3.2 Dynamic Free Fields, Codes and Records 26

3.2.1 Free Field Values 27

3.2.2 Code Values 28

3.2.3 Dynamic Records Values 29

3.3 File Based Integration 31

3.3.1 File Import Batch Processing Request 31

3.3.1.1 Allowed characters for File Paths 32

3.3.2 Response File and Process Completion Notification 32

3.3.3 Interface Task Log 33

3.4 Service Based Integration 33

3.4.1 OHI Components Web Services 34

3.4.1.1 Synchronous Message Processing 34

OHI Components - Common Features Guide 3

3.4.1.2 Asynchronous Message Processing 34

3.4.2 OHI Components as Web Service Client (outbound requests) 34

3.4.2.1 Synchronous Message Processing 34

3.4.2.2 Asynchronous Message Processing 35

3.5 Interface Messages Log 35

3.5.1 Result Messages 35

3.5.2 Interface Messages Log 36

3.5.2.1 Interface Message 36

3.5.2.2 Interface Message Details 37

3.5.3 Interface Messages Log UI page 37

3.6 Data Set Operations Integration Point 37

3.6.1 Operation Requests 38

3.6.1.1 Stop Dequeue 38

3.6.1.2 Start Dequeue 38

3.6.1.3 Build Data Set 38

3.6.1.4 Save to File 38

3.6.1.5 Import From File 39

3.6.1.6 Import From Environment 40

3.6.2 Response File 40

3.7 Result Messages 41

3.7.1 Indicating Success or Failure 41

3.7.2 Result Messages 41

3.8 Integration Testing 43

3.8.1 Environment for Prerequisite Services 43

3.8.2 Environment for Operational Services 43

3.9 Web Service Versioning 44

3.9.1 Compatibility 44

3.9.2 Flexible Versioning Strategy 44

3.9.3 Resolving Version Conflicts across Releases 45

4 HTTP API Integration Points 47
4.1 HTTP API resources in an OHI Components application 47

4.2 Attribute Handling 47

4.2.1 Single Value Attributes 47

4.2.1.1 Amount and Currency 48

4.2.2 Details 48

4.2.3 Dynamic Fields and Records 49

4.2.3.1 Dynamic Fields 49

4.2.3.2 Dynamic Records 54

4.2.4 Errors 58

4.3 Response Messages 59

4.3.1 Indicating Success 59

4.3.2 Links 59

4.3.3 Pagination 60

4.3.4 Indicating Failure 60

4.3.5 Failure Result Messages 61

OHI Components - Common Features Guide 4

4.4 Data File Set Integration Point 63

4.4.1 Creating a data file set with one or more files in conversation mode (multiple

requests). 63

4.4.1.1 Step 1: Create Data File Set 63

4.4.1.2 Optional: Create data file set with a data file 64

4.4.1.3 Step 3: Add data to Data File 65

4.4.2 Creating a data file set with multiple files in a single request 65

4.4.3 Other Available Operations 66

4.4.3.1 Get defined data file sets in the system 66

4.4.3.2 Get details of a data file set 66

4.4.3.3 Get details of a data file 66

4.4.3.4 Update details of a data file set 66

4.4.3.5 Update details of a data file in a data file set 67

4.4.3.6 Delete a data file set 67

4.4.3.7 Delete a data file in a data file set 67

4.4.4 Error Messages 67

4.5 Activity Integration Point 67

4.5.1 Conversation Parameter 70

4.5.1.1 Error Messages 71

4.5.1.2 Examples 71

4.6 File Based Import 72

4.6.1 Example : Provider Import 73

4.6.1.1 Step 1: Create data file set with a data file 73

4.6.1.2 Step 2: Upload Content 74

4.6.1.3 Step 3: Initiate the Provider Import Activity using Create Activity (/

activities) 74

4.6.1.4 Step 4: Start Provider Import Activity 74

4.6.1.5 Step 6: Get result messages 75

4.6.1.6 Step 7: Get response file 75

4.7 Seed Data 76

4.7.1 Activity Types 76

4.7.2 Flex Code Field Usages 76

4.7.2.1 Dynamic Record Definition FILE_IMPORT 76

5 Integrating multiple OHI Applications 77
5.1 Data Replication 77

6 User Interface Pages 85
6.1 Desktop Integration 85

6.1.1 Mock-up 85

6.1.2 OHI Workbook 85

6.1.2.1 Worksheet Section 85

6.1.2.2 About Section 86

6.1.3 Columns 87

6.1.3.1 Standard 87

6.1.3.2 Page Specific 89

6.1.4 User Access 89

6.1.5 Not Supported 89

OHI Components - Common Features Guide 5

6.2 Search Function 89

6.2.1 Quick Search 90

6.2.2 Advanced Search 90

6.2.3 Search Types 90

6.2.4 From/To Search 91

OHI Components - Common Features Guide 6

1 Data Model

1.1 Activity and Data File Set Model

1.1.1 Activity Model

This entity holds the types of activities that are used for bulk data processing. All activity types
are seeded and are not user maintainable.

 Activity Type

Field Description

Code Unique code of the activity type

Description Description of the activity type

Active Indicator Indicates if the activity type is active and can be
used

Display in UI Indicator Indicates if activities of an activity type can be
viewed in the UI or not

Top Level Indicator Indicates if the activity type can be started directly

Type Level Level on which the activity can be started

• GL-Global

• TS-Transaction Set

• BF- Base Financial Object

Dynamic Record Definition Association to the dynamic record definition that
defines the fields that are available as parameters for
activities of an activity type and for the parameter
sets created for that activity type

An activity record is a control record for tracking specific execution details of an activity type.

Activity

Field Description

Activty The activity that spawned this activity

Activity Type The activity type to which this activity belongs to

Description Description of the activity

Internal Remark Unstructured remarks about the activity

Extra Info Data with additional processing information

Origin The origin of the activity

• I - Integration Point

• M - Manual

• S - Spawned

Run Datetime Date and time on which the activity was started

OHI Components - Common Features Guide 7

Status Status of the activity

• BE - Business error
Business errors are foreseen situations in the processing of
an activity, foreseen meaning that the situation is identified
in the processing description and leads to a specified error.
Recovery of a business error normally requires changes to the
configuration and/or reference data.

• CB - Completed with business errors
This status is set for a spawning activity if one or more of
the spawned activities has a Business Error and none has a
Technical Error.

• CT - Completed with technical errors
This status is set for a spawning activity if one or more of the
spawned activities has a Technical Error.

• CO - Completed
This status is set if the activity itself and all of the spawned
activities are completed without any (business or technical)
errors.

• IN - Initial

• IP - In process

• TE - Technical Error
Technical errors are unforeseen situations in the processing
of an activity, caused by for example coding errors or
unavailability of system services or resources. Recovery
of a technical error caused by erroneous dynamic logic
requires debugging the dynamic logic code.Recovery of other
technical errors mostly requires actions at system operating
level like enabling the system services or resources.

Parameter Set Reference to the parameter set that was used to start the activity

Dynamic Record Reference to the dynamic record that is added to an activity based on the
activity type of the activity.

Constraints:

• An activity cannot reference both a parameter set and have a parameter values dynamic
record.

Activity can cause activity messages.

Activity Message

Field Description

Code Code of the message

Element Id This is for logical grouping of the messages by referencing them to the
unit of processing for the activity

Subject Id Reference to subject involved

Table Reference to the entity for which the message is meant for, e.g. a
relation. Subject Id is always used in combination with a reference to
entity, where subject id holds the id within the context of that entity

1.1.2 Data File Set Model

A Data file set is a collection of the data file(s) which are either uploaded to or generated for
extraction by OHI Claims application.

OHI Components - Common Features Guide 8

 Data File Set

Field Description

Code The unique identification code of the data file set

Description Description of the data file set

Indicator Locked Indicates if the data file set is available for
modification or not

Constrains:

• Data file set that is locked cannot be modified.

• Data file set that is locked cannot be picked up for processing by an activity type.

Data File

Field Description

Code The unique identification code of the data file within a data file set

Description Description of the data file

Content Length Size of the data file

File Data The contents of the data file

File Path The path of the uploaded file

MIME Type The content type of the data file

Data File Set Reference to the data file set to which the data file belongs

1.2 Translation

This chapter describes multi language support in OHI Claims. Use cases are included to describe
installation in multiple languages. This page also describes the translation of seed data and
business data.

1.2.1 Concepts

OHI Claims supports multiple languages. It will display texts and messages in the Display
Language chosen by the end user in the User Preferences Page.

This applies to several categories of items:

1. Boilerplate. This refers to all 'fixed' items on pages like prompts, headings, titles and menu
options.

2. Messages. Text of warnings and error messages.

3. Business data. Many entities in OHI Claims have translatable text items. Examples: Code
and Description of Tag Types, Display Name of Fields etc.

Every entity that contains translatable attributes, is implemented as a base table and a translations
table. The non-translatable columns in the table are stored in the base table, that is given a
_B suffix. The translatable columns are stored in the translations table, that is given a _TL
suffix. The BASE_TABLE_ID stored in the _TL links a translation to the base. The _TL table is
striped by a LANGUAGE column.

Example: MESSAGE entity

Non translatable items of a MESSAGE are stored in OHI_MESSAGES_B. The message attribute
is translatable, and thus implemented in the OHI_MESSAGES_TL. (This example does not show
all columns of _B and _TL, but only a few to clarify the concept)

Base Table OHI_MESSAGES_B

OHI Components - Common Features Guide 9

ID CODE SEVERITY

1 OHI_DUMMY_001 ERROR

2 OHI_DUMMY_002 WARNING

Translation Table OHI_MESSAGES_TL

ID LANGUAGE SOURCE_LANG MESSAGE

1 en__OHI en__OHI Maximum exceeded

1 en en__OHI Maximum exceeded

1 nl nl Maximum overschreden

2 en__OHI en__OHI No permission was granted for this

2 en en__OHI No permission was granted for this

2 nl nl Er is hier geen toestemming voor gegeven

The ID column in the _TL table refers to the base row in the _B table, and both the LANGUAGE
and SOURCE_LANG column in the _TL table refer to a table with supported languages.

When displaying data from a _TL table in a screen, the value shown is taken from the row where
language equals the Display Language the user has set in the User Preferences page.

SOURCE_LANG determines the source language of a _TL row. In the example above, the rows
in OHI_MESSAGES_TL for language 'en' have SOURCE_LANG 'en__OHI', meaning that these
rows are copied from the language 'en__OHI' during installation and not translated/changed yet.
When the user changes a translatable item, the SOURCE_LANG is set to the current language of
the user. This has been done for the _TL rows for language 'nl' in the above example.

So, the Language column in a TL table is used to select the row that matches the Display
Language of the current user. The Source_lang column determines the language from which the
translatable items originate.

1.2.1.1 Supported languages

The OHI_LANGUAGES table contains the list of supported languages. Per language, several
indicators define the possible roles of a language. See table below:

Indicator Column Purpose Allowed to change by
customer

Number of languages
with value 'Y' for this
Indicator

ind_default the language in which
translatable items are
shown when no user
preference is set.

Yes. Should be set to an
installed language

1

ind_ohi_specific 'Y' for languages for
which seed data is
delivered.

No. 1

ind_installed 'Y' for languages in
which the application
can run.

Only before installation 2 or more

1.2.1.2 Seed Data

Both Boilerplate and Messages are delivered as seed data upon installation. For Boilerplate, the
customer cannot enter new rows. Customers can add new messages. Seeded messages are marked
as OHI Specific and cannot be changed by the customer.
Seed data is only delivered in supported languages. Currently, this is only English. To facilitate
translation of terminology, a dedicated language is created for seed data delivery: OHI English
(code=en__OHI). Upon installation, the seed data is loaded in OHI Claims under language

OHI Components - Common Features Guide 10

'English' and 'OHI English'. Customers can translate seed data in the 'English' language, but not in
the 'OHI English' language.

1.2.2 Use Cases

1.2.2.1 Installation in English

Customers want to run OHI Claims in English only. Before installation, the following values
should be set in OHI languages.

Code Ind Default Ind OHI Specific Ind Installed

en Y N Y

en__OHI N Y Y

all other languages N N N

During installation, the seeded value for OHI English will be copied to English.
Take for example the message GEN_UINT_002, with text 'Validation errors found, changes are
not saved.' Seed data is delivered for language 'en__OHI'.
After installation, the contents of the OHI_MESSAGES_TL table are as follows:

Code Source Language Language Message

GEN_UINT_002 en__OHI en__OHI Validation errors found,
changes are not saved.

GEN_UINT_002 en__OHI en Validation errors found,
changes are not saved.

Code is not really a column of OHI_MESSAGES_TL, but a foreign key to the _B table.
It is shown this way to clarify the concept.

Exactly the same concept applies to boilerplate texts.

1.2.2.2 Installation in English and French

Customer wants to run OHI Claims in English (default) or French. Before installation, the
following values should be set in OHI languages.

Code Ind Default Ind OHI Specific Ind Installed

en Y N Y

en__OHI N Y Y

fr N N Y

all other languages N N N

During installation, the seeded value for OHI English will be copied to English and French.
After installation, the contents of the OHI_MESSAGES_TL table are as follows:

Code Source Language Language Message

GEN_UINT_002 en__OHI en__OHI Validation errors found,
changes are not saved.

GEN_UINT_002 en__OHI en Validation errors found,
changes are not saved.

GEN_UINT_002 en__OHI fr Validation errors found,
changes are not saved.

Notice the value en__OHI of the Source Language column, meaning that the records for en and fr
are copied from the OHI English value.

OHI Components - Common Features Guide 11

1.2.2.3 Translation of Seed Data

After installation, the seed data can be translated either because of the use of a different language,
or because the customer uses business terminology that deviates from the seeded data. For
example the seeded data uses the term 'Provider Group' whereas the customer uses the term
'Network' for the same concept.

Translation can be done as follows:

1. Set the Display Language in the User Preferences to the language for which seed data should
be translated.

2. Use the Bulk Translation function to translate multiple boilerplate texts and messages in one
go. This option is most appropriate when translating business terminology.

3. Use the Messages and Boilerplate functions to translate records one by one.

See the next three use cases for details.

1.2.2.4 Translation of messages one by one

Example for translation of GEN_UINT_002 to French:

1. Set the Display Language to 'French'

2. Go to the Setup Messages page and query GEN_UINT_002.

3. The Messages page will display the French record with the non-translated Message
'Validation errors found, changes are not saved.'

4. User changes the message text to 'Les erreurs de validation trouvé, les changements ne sont
pas enregistrées.' (translated by Google).

The contents of the OHI_MESSAGES_TL table is now as follows:

Code Source Language Language Message

GEN_UINT_002 en__OHI en__OHI Validation errors found,
changes are not saved.

GEN_UINT_002 en__OHI en Validation errors found,
changes are not saved.

GEN_UINT_002 fr fr Les erreurs de validation
trouvé, les changements
ne sont pas enregistrées.

Only the French row is changed. Notice the change of the Source Language column.

1.2.2.5 Translation boilerplate entries one by one

Steps to translate menu- and display titles; use 'Network' instead of 'Provider Group':

1. Set the Display Language to 'English'

2. Go to the Setup Boilerplate Texts page and query the boilerplate texts with code like
'rel_providergroup_title%'.

3. The Messages page will display the matching boilerplate texts entries with values in OHI-
English.

4. User changes the text values of the boilerplate texts by replacing the term 'Provider Group'
by 'Network'.

The contents of the OHI_MESSAGES_TL table is now as follows:

Code Source Language Language Text Value

REL_PROVIDERGROUP_TITLE_SINGULARen__OHI en__OHI Provider Group

REL_PROVIDERGROUP_TITLE_SINGULARen en Network

OHI Components - Common Features Guide 12

REL_PROVIDERGROUP_TITLE_SINGULARen__OHI fr Provider Group

1.2.2.6 Bulk translation

Instead of translation of boilerplate text entries and messages one by one, bulk translation can
translate multiple items at once. When translation of business terminology is needed, it is most
likely that multiple messages and boilerplate text entries have to be changed.

Steps to use 'Network' instead of 'Provider Group' in boilerplate and messages:

1. Set the Display Language to 'English'

2. Go to the Bulk Translation page.

3. Enter '%provider group%' as search value. All matching messages and boilerplate entries are
shown.

4. Enter 'provider group' for Term From and 'network' for Term To and press translate.

5. All occurrences of 'provider group' in the matching messages and boilerplate entries are now
replaced by 'network'. These changes are not committed yet.

6. Review the changes and make corrections if necessary.

7. Commit the changes by pressing 'Save'.

1.2.2.7 Reinstallation

During reinstallation, only rows with Source Language 'en__OHI' will be overwritten. Translated
values with other source language values will be retained.

1.2.2.8 Creation of Business Data

When new business data is created, text values are duplicated to the other installed languages
using the same approach as during installation.

Example:

• en__OHI, en and fr are installed languages.

• User has Display Language set to French.

User creates a new Tag Type 'Personne très Importante'. The contents of the
REL_TAG_TYPES_TL table are now as follows:

Code Source Language Language Description

PTI fr fr Personne très Importante

PTI fr en Personne très
Importante.

PTI fr en__OHI Personne très Importante

1.2.2.9 Translation of Business Data

After creation of the tagtype using the steps in the previous paragraph, the user switches to
English and changes the code and description to VIP, Very Important Person.

The contents of the REL_TAG_TYPES_TL table are now as follows:

Code Source Language Language Description

PTI fr fr Personne très Importante

VIP en en Very Important Person.

PTI fr en__OHI Personne très Importante

From the UI, it is not possible to see which items are translatable and which are not. This query
lists all items in _TL tables:

set pagesize 100

OHI Components - Common Features Guide 13

set linesize 100
set escape off

select table_name, column_name from all_tab_columns where table_name like '%_TL' escape '\'
and column_name not in ('BASE_TABLE_ID','ID','LANGUAGE','SOURCE_LANG')
order by table_name, column_name
/

OHI Components - Common Features Guide 14

2 Integration Concepts

OHI Components applications are designed to operate as a component in a component-based or
service oriented architecture. This guide provides an overview of the
integration capabilities of OHI Components applications. Additional information with respect to
OHI Components applications integration points is available in other guides, for example:

• See the Installation Guide for service endpoint URLs and configuration options for these

• See the Security Guide for guidance on properly securing integration endpoints

2.1 Integrating with OHI Components Applications

This chapter introduces techniques and patterns used for integrating with OHI Components
applications. The following principles played an important role for designing the integration
services:

• Use of well-known, proven standards that are widely supported by tools and middleware of
many vendors in the IT industry

• Avoid interoperability issues, allowing customers to use OHI Components applications with
the IT services they already own and operate

Common integration techniques used in OHI Components applications are:

• File-based integration is used for importing or exporting large sets of data. Examples
include imports of ICD-9 or ICD-10 code systems and export of financial messages that are
generated in OHI Components Claims or OHI Components Value-Based Payments.

• SOAP web services are used for exchanging business data with other applications in a health
insurance payer’s IT landscape. For SOAP web services in OHI Components applications
the ‘service contract’ is defined by Oracle in the form of a WSDL that defines the service
operations and XSDs that define the message payloads. Oracle also defines the WSDL and
XSDs for web services that are called from OHI Components applications.

• RESTful style web services are also available for interacting and integrating with OHI
Components applications. Formal specifications for RESTful services is available in the form
of RAML documents that are bundled with each application.

Going forward, any new services will be developed as RESTful services, no new SOAP services
will be added.

Oracle develops SOAP web services with JAX-WS, the reference implementation for developing
SOAP web services in Java whereas RESTful services are constructed using JAX-RS, the
reference implementation for developing RESTful web services in Java.

All web services in OHI Components applications perform stateless operations.

2.2 Auditing and Exception Handling

In a component architecture it is paramount that interaction between systems can be tracked
and audited. The following is a list of system behaviors and features that support auditing and
exception handling in OHI Components:

• Messages that indicate any kind of failure are always logged. Messages that confirm a
successful result within the context of synchronous interaction are not logged. The overhead

OHI Components - Common Features Guide 15

for logging these would impact the performance of these relatively lightweight operations.
Messages that indicate failure are logged together with data that can help to determine the
cause.

• If an OHI Components application cannot deliver a message, it will not retry that operation
instantly. This behavior is based on the underlying assumption that a network failure that
prevents successful interaction is not going to be resolved instantly. Instead, a task is raised
for delivering the message at a later moment in time, to be triggered by a system operator as
soon as the network is restored.

• For SOAP services, OHI Components applications can validate if message payloads adhere
to the XSD specification. This feature is configurable on a per web service basis and is
disabled by default for performance reasons.

• The logging subsystem can be configured to gather message payloads in log files. Specific
measures can be taken for logging message payloads that may contain protected health
information. Additional details for checking interfaced messages and results of processing
these are documented elsewhere in this guide.

OHI Components - Common Features Guide 16

3 Soap Integration Points

3.1 Attribute Handling

Each integration point request message contains data values of a top-level entity (e.g. relation
or provider) that have been created or updated in a source system. Within each message are
several categories of data such as simple entity-level attributes, lists of non-time valid details, and
lists of time-valid details. This section describes how each category of data is handled by OHI
applications and also covers guidelines for handling differences in data categories between source
systems and OHI applications.

The way that an OHI application handles web service requests is based on the principle that the
copy of information in the OHI application is to be kept up-to-date with the (master) information
in the system of record. It is not required that the OHI application is informed of every update
system of record; only the values at the time of creating the web service requests are important.
 For example, if an interface periodically creates requests for all outstanding additions and
updates, only the values of source system data at the time that the interface is run need to be sent.
Whether a record has been updated several times or once since the last interface run is irrelevant.

If an existing record is sent again and it contains the exact same data that is already stored in the
system, the existing data will not be updated. This means that the audit columns in the database
will also remain unchanged. Tracking these messages can be done through the interface messages
log.

3.1.1 Single Value Attributes

These are fields that can have only one single value and the value does not have a start and end
date. When the application creates a new record, single value attributes are handled as follows:
if the attribute is not included in the request, then the corresponding attribute in the new record
will be set to null; if the attribute is included in the request, then the corresponding attribute in the
new record will be set to the specified value.

When the application updates a record, a single value attribute is handled as follows: if the
attribute is not included in the request, then the existing value in the application remains
untouched; if the attribute is included in the request, then the attribute value is updated with the
specified value.

For example, consider a new relation being added in the system of record. Because the OHI
application keeps a local copy of relation records, the system of record sends the following
request to the OHI application:

<relation
 code="1333"
 name=Jones
>
 <personDetails
 firstName="John"
 >
>

Since this is the first time that the relation with code 1333 is being sent, the OHI application
creates a new relation record with only code, name, and firstName having values. All other
attributes in the new record in the OHI application will be null. The relation is updated in the
source system; the first name is changed from "John" to "Jonathan". The system of record sends
the following request to the OHI application:

<relation
 code="1333"
>
 <subTypeDetails>

OHI Components - Common Features Guide 17

 <person
 firstName="Jonathan"
 >
 </subTypeDetails>
</relation>

Since there is already a relation with this code, the OHI application will update the relation record
with code = 1333 setting <person firstName> to Jonathan. <Relation name> will not be changed
or set to null.

External Interface Design Notes

If a given type of data is a single value attribute in an Integration Point message definition and
a time valid detail list in the source system, the external interface is expected to only send the
latest / current value.

If a given type of data is a single value attribute in an Integration Point message definition and a
non time valid detail list or otherwise not a one-to-one match in the source system, the external
interface will require (dynamic) logic needed to determine what value should be provided.

3.1.1.1 Amount and Currency

Amount and currency are two attributes that belong together, so they are always represented
together in a separate element. For example:

<authorizedAmount
 amount="100"
 currencyCode="USD"
/>

If the element is not included in the request, then the existing values for amount and currency in
the application remain untouched; if the element is included in the request, then the values are
updated with the specified values. In order to send in an update that clears the values, the update
request should include the element without any attributes and values (empty element).

3.1.2 Non Time Valid Details

This category covers a list of details (of single values or of detail records) that are details of a
parent entity but that are not time valid (i.e. each detail record does not have start and end dates),
such as relation titles or tags.

When the OHI application creates new records (for an entity with a non time valid detail list):

• If the detail list element is not included, no details are added

• if a detail list element is included, one detail record for each included detail item is created

When the OHI application is updating an existing record (for an entity with a non time valid
detail list):

• If the list element is not included, no changes to current details are made

• If a list element is included, included detail items completely replace current detail records
(in effect, all current detail records that have not been resent (i.e. for which there is no detail
item with exactly matching values) are removed and one detail record for each included
detail item (that is not a 'resend') is created)

• If an empty list element is included, all current detail records are removed

3.1.3 Time Valid Details

This category refers to a list of details within a parent entity that is time valid (i.e. each item of
the list has a start and an end date). The items of the list have one or more single value attributes
(in addition to the start and end dates) and may themselves contain a list of details. For example,
a product (parent record) may have multiple provider groups (time valid details). The link
between each product and provider group has a start and an end date.

OHI Components - Common Features Guide 18

Lists of details may have a 'detail functional key'. A detail functional key refers to a key of list
items / detail records that is unique within a list of details at a specific point in time. In effect
a history of values is maintained per detail functional key. An example of a list of details with
a detail functional key is relation addresses. In this case, address type is the detail functional
key and there may only be one address of each type current at any point in time; however, there
may be more than one address current at the same point in time if they are of different types.
 An example of a list of details without a detail functional key is marital status of relations. In
this case, there may only be one marital status current at any given point of time. The following
sections describe how the various conditions related to time valid details are handled.

3.1.3.1 Parent Record Creation

When the OHI application creates a new record (for an entity with a time valid list of details),

• if the list element is not included, no details are added,

• if a list element is included, one detail record is created for each item of the list.

3.1.3.2 Parent Record Update

When the OHI application updates an existing record (for an entity with a time valid list of
details), one of the following situations applies:

• no list element is included

• the list element is included without list items and without a resendFromDate

• the list element is included without list items, but with a resendFromDate

• the list element is included with list items

In the first two situations, no changes to current details are made. In the third and fourth situation,
i.e., a list with items or/and a resendFromDate, the OHI application updates the list on the
existing record. How that detail list is updated depends on several conditions related to the
message contents and what is already stored in the OHI application. This decision table indicates
for the various combinations of conditions which updates are made. Each of these scenarios is
described separately following the table.

Conditions Expected Results

Start Date
Match

Starts
During
Period

Starts
Before Last
Period

End
Overlap
Period

Update
Matched
Period

Create
Period

Delete
Later
Period(s)

1. Y N Y X X

2. Y N N X

3. N Y Y X X X

4. N Y N X X

5. N N Y X X

6. N N N X

Essentially, the detail list in a parent record update replaces the detail list of the existing record,
going forward from a specific date. That date can either be explicit in the update request (the
attribute 'resendFromDate') or, if not made explicit, it defaults to the earliest start date of the
detail list in the update request.

For example, suppose a relation has had a number of addresses starting on from the 1st of Jan
2008. The relation is updated with a list of addresses in which the first address starts on the 1st of
Jan 2009. The update does not specify an explicit resendFromDate, so it defaults to the 1st of Jan
2009. The existing address history between Jan 1st 2008 and Dec 31st 2008 remains intact.

The following two diagrams illustrate the scenarios using marital status. Scenario 1 through 6
presume no explicit resendFromDate is specified. Scenario 7 clarifies what happens in the event
that the resendFromDate is explicit.

OHI Components - Common Features Guide 19

'Create' indicates what has already been created and is present in the OHI application when the
'Update' is received. The result indicates what the situation will be in the OHI application once
the update is processed.

3.1.3.2.1 Matching Start Date (Scenarios 1 and 2)

Figure 3-1: Examples of scenario 1

Figure 3-2: Examples of scenario 2

Detail Functional Key

If a new item is received in a message and there is a record present with the same detail
functional key and a matching start date, this record will be updated with new values from the
message (if any of the values differ). Any record with the same detail functional key that starts
after the start date of the new item that has not been resent will be deleted. Note that end date is
treated in the same way as other fields.

No Detail Functional Key

If a new item is received in a message and there is a record present with the same start date,
this record will be updated with new values from the message (if any of the values differ). All
records that start after the start date of the new item that have not been resent will be deleted.
Note that end date is treated in the same way as other fields.

Examples

An address (that is already stored in the OHI application) is corrected in the source system by
changing it from

Site (S), 122 Jefferson Ave, New York (2005-1-1 - 2008-6-30)

to

Site (S), 128 Jefferson Ave, New York (2005-1-1 - 2008-6-30)

The external interface needs to send the latest details:

OHI Components - Common Features Guide 20

<address
 type="S"
 houseNumber="128"
 startDate="2005-1-1"
 endDate="2008-6-30"
/>

The OHI application will then update its previously stored copy of the address.

An address (that is already stored in the OHI application) is ended in the source system by
changing it from

Site (S), 1422-3rd Ave, New York (2008-1-1 -)

to

Site (S), 1422-3rd Ave, New York (2008-1-1 - 2009-8-31)

The external interface needs to send these details:

<address
 type="S"
 startDate="2008-1-1"
 endDate="2009-8-31"
/>

The OHI application will then update its previously stored copy of the address with the new end
date.

Note: In this example, <address type> is the detail functional key.

3.1.3.2.2 Values Updated (starting a new period during an existing period) (Scenario 3 and 4)

Figure 3-3: Examples of scenario 3

Figure 3-4: Examples of scenario 4

OHI Components - Common Features Guide 21

Detail Functional Key

If an item is received with a start date that is after the start date of the last record with the same
detail functional key and the last record has no end date , the last record will have its end date
updated to the day before the start date of the new detail record and a new record will be created
with the new details from the message.

Likewise, if an item is received with a start date that is between the start date and end dates of a
record with the same detail functional key:

• this record will have its end date updated to the day before the start date of the new detail
record

• any record with the same detail functional key that starts after the start date of the new item
that has not been resent will be deleted

• the new address will be stored

No Detail Functional Key

If an item is received with a start date that is after the start date of the last record and the last
record has no end date , the last record will have its end date updated to the day before the start
date of the new detail record and a new record will be created with the new details from the
message.

Likewise, if an item is received with a start date that is between the start date and end dates of a
record:

• this record will have its end date updated to the day before the start date of the new detail
record

• any record that starts after the start date of the new item that has not been resent will be
deleted

• the new address will be stored

Example

A new address is recorded in the source system when there is already an address (for the same
detail functional key, in this case address type) stored in the OHI application.

Address before adding new address:

Site (S), 1223-9th Ave, New York (2008-7-1 -)

New address with effective date 2009-8-1

Site (S), 544-E 35th Street, New York (2009-8-1 -)

The external interface only needs to send the new address details:

<address
 type="S"
 street="E 35th Street"
 houseNumber="544"
 startDate="2009-8-1"
/>

The OHI application will then update its previously stored copy of the address with an end date
and store the new address.

Site (S), 1223-9th Ave, New York (2008-7-1 - 2009-7-31)
Site (S), 544-E 35th Street, New York (2009-8-1 -)

Alternately, the external interface could send both addresses with both changed and unchanged
details:

OHI Components - Common Features Guide 22

<address
 type="S"
 street="9th Ave"
 houseNumber="1223"
 city="New York"
 startDate="2008-7-1"
 endDate="2009-7-31"
/>
<address
 type="S"
 street="E 35th Street"
 houseNumber="544"
 city="New York"
 startDate="2009-8-1"
/>

This would have the same result in the OHI application.

Example 1

A new (past) address is recorded in the source system when there are already addresses (for the
same detail functional key, in this case address type) stored in the OHI application.

Addresses (in both the source system and the OHI application) before adding new address:

Site (S), 122 Washington St, New York (2007-1-1 - 2008-4-30)
Site (S), 185-7th Ave, New York (2008-5-1 -)

Addresses after adding new address:

Site (S), 122 Washington St, New York (2007-1-1 - 2008-1-31)
Site (S), 342 E 46th Street, New York (2008-2-1 - 2008-4-30)
Site (S), 185-7th Ave, New York (2008-5-1 -)

The external interface needs to send the new addresses and all addresses that start after it:

<address
 type="S"
 street="E 46th Street"
 houseNumber="342"
 city="New York"
 startDate="2008-2-1"
 endDate="2008-4-31"
/>
<address
 type="S"
 street="7th Ave"
 houseNumber="185"
 city="New York"
 startDate="2008-5-1"
/>

The OHI application will then update the end date of the address that end after the start date of
the new address and replace later addresses with the newly provided addresses resulting in:

Site (S), 122 Washington St, New York (2007-1-1 - 2008-1-31)
Site (S), 342 E 46th Street, New York (2008-2-1 - 2008-4-31)
Site (S), 185-7th Ave, New York (2008-5-1 -)

Alternately, the external interface could also send the address that needed to be updated with the
new end date:

<address
 type="S"
 street="Washington St"
 houseNumber="122"
 city="New York"
 startDate="2008-2-1"

OHI Components - Common Features Guide 23

 endDate="2008-4-31"
/>
<address
 type="S"
 street="E 46th Street"
 houseNumber="342"
 city="New York"
 startDate="2008-2-1"
 endDate="2008-4-31"
/>
<address
 type="S"
 street="7th Ave"
 houseNumber="185"
 city="New York"
 startDate="2008-5-1"
/>

with the same result in the OHI application.

Example 2

A new maritalStatus is added 'within' the periods of a previous status:

Original maritalStatus list:

Single (2007-1-1 - 2008-4-31)
Married (2008-5-1 -)

List after adding new status

Single (2007-1-1 - 2007-10-31)
Married (2007-11-1 - 2008-1-31)
Single (2008-2-1 - 2008-4-30)
Married (2008-5-1 -)

The external interface will need to send all periods starting with the period that has been added:

<maritalStatus
 status="Married"
 startDate="01-11-2007"
 endDate="31-01-2008"
/>
<maritalStatus
 status="Single"
 startDate="01-02-2008"
 endDate="31-04-2008"
/>
<maritalStatus
 status="Married"
 startDate="2008-5-1"
 >

The OHI application will then end the first status and replace the later statuses with the new ones
from the message.

OHI Components - Common Features Guide 24

3.1.3.2.3 Late Addition of a Detail Item (Scenario 5)

Figure 3-5: Examples of scenario 5

Detail Functional Key

If an item is received with a start date before the start date of the last record with the same detail
functional key and it does not start between the start and end dates of another record with the
same detail functional key:

• any record with the same detail functional key that starts after the start date of the new item
that has not been resent will be deleted

• the new address will be stored

No Detail Functional Key

If an item is received with a start date before the start date of the last record and it does not start
between the start and end dates of another record:

• any record that starts after the start date of the new item that has not been resent will be
deleted

• the new address will be stored

External Interface Design Notes

In effect, what this approach means is that when a time valid detail record is sent, all subsequent
detail records (for the same detail functional key if applicable) need to be sent as well.

If a given type of data is a time valid detail list in an Integration Point message definition and a
single value attribute (set of attributes) in the source system, the external interface is expected to
send the current values in the time valid detail list with a fixed start date (earlier than would ever
be referred to) and a null end date.

If a given type of data is a time valid detail list in an Integration Point message definition
and a non time valid detail list or otherwise not a one-to-one match in the source system, the
external interface is expected to apply (dynamic) logic needed to determine what value should be
provided.

OHI Components - Common Features Guide 25

3.1.3.2.4 No Overlapping Dates and No Later Periods (Scenario 6)

Figure 3-6: Examples of scenario 6

Detail Functional Key

If a new item is received in a message and for the item:

• there are no records present with the same detail functional key,

• there are records present with the same detail functional key but the new item starts later then
any of these records ends,

a detail record is created for the item.

No Detail Functional Key

If a new item is received in a message and:

• there are no current items, or

• all current items end before the new item starts,

a detail record is created for the item.

3.1.3.2.5 Explicit Resend Date (Scenario 7)

Figure 3-7: Examples of scenario 7

In scenario 1 through 6, the detail item list is updated going forward from the start date of the
first list item in the update request. As a consequence, the updates in these scenarios always entail

OHI Components - Common Features Guide 26

the creation of a new item on that date going forward. In order to update a detail item list in such
a way that a list item is removed without replacement, the list header element must specify a
resendFromDate. This has the following effect:

• All existing list items that start on or later than the resendFromDate are deleted

• All existing list items that start before and end on or later than the resendFromDate are ended
one day prior to the resendFromDate

• All existing list items that end before the resendFromDate remain untouched

• The existing list is updated with the list items in the update request.

In the event that one of the list items in the update request has a start date prior to the specified
resendFromDate, the resendFromDate is ignored and the update will be accordance with scenario
1 through 6. In the event that the update request only specifies the list header element with a
resendFromDate, the existing list is simply updated in accordance with the bullets above, but no
new items are added to that list as a result of the update.

Note that lists with and without detail functional key are handled in the same way, i.e., a specified
resendFromDate removes all items from that date going forward.

External Interface Design Notes

When using the resendFromDate all items of a given list for all detail functional keys with a start
date on or after the resendFromDate need to be resent. This is different than in the other scenarios
where only items of a single detail key need to be resent.

Example 1

Original maritalStatus list:

Single (2007-1-1 through 2008-4-31)
Married (2008-5-1, no end date)

Update request message:

<maritalStatusList
 resendFromDate="2007-07-01>
 <maritalStatus
 status="Married"
 startDate="2007-11-01"
 />
</maritalStatusList>

This update will remove all marital status information going forward from the resendFromDate,
i.e., 2007-07-01. This will cause the existing item "Single" to be end dated on 2007-06-30, and
will entirely remove the existing item for "Married". A new "Married" item is added to the list.
List after the update:

Single (2007-1-1 - 2007-6-30)
Married (2007-11-1, no end date)

3.2 Dynamic Free Fields, Codes and Records

This section describes the default behavior of integration points that accept dynamic field,
code and record values. The configuration of the relevant dynamic field usages drive how the
integration point processes a request with new dynamic field values. The driving aspects are the
usage type (field, code or record), whether the field can have multiple values, whether the field
vale is time valid and whether the field values have a key identifier.

Dynamic field values can be created and updated through the <dynamicField> element. The
name attribute in this element identifies the field that is created or updated. If an update request
does not include a <dynamicField> element for a dynamic field usage with existing values, then
those existing values are not touched. In other words, the default behavior for an integration point

OHI Components - Common Features Guide 27

is that an update request without a <dynamicFields> element leaves all existing dynamic field
values intact.

This section describes update behavior in particular, since the initial insertion of new values is the
same across all types and usage configuration.

3.2.1 Free Field Values

Like any dynamic field, free fields can be configured to have multiple values and these values
can be configured to be time valid. Free field values are either dates, numbers or character
strings; they never have a functional identifier. This makes the update behavior straightforward;
sending in (a) value(s) for a single-value non-time-valid field, a multi-value non-time-valid field
or a multi-value time-valid fields always results in a full replacement of all the existing values.

Single-value time-valid fields have slightly different behavior; sending in a new value for such
a field will delete any values with a later start date, will cut off any overlapping value with an
earlier start date, but will not touch any existing value that is end-dated before the start date of the
new value.

The following pseudo XML reflects the structure of a single-value time-valid free field

<dynamicFields>
 <dynamicField
 name="occupation"
 >
 <value
 startDate="2010-05-01"
 endDate="2012-09-30"
 >Baker</value>

Suppose that, before the request is processed, the following values exist for the "occupation"
field:

Occupation

Value Start End

Butcher 2005-01-01 2009-12-31

Courier 2010-01-01 2011-05-31

Shopkeeper 2011-06-01 n/a

The result of the update request would be:

Occupation

Value Start End

Butcher 2005-01-01 2009-12-31

Courier 2010-01-01 2010-04-30

Baker 2010-05-01 2012-09-30

The "Shopkeeper" value is removed because it started after the "Baker" value in the update
request. The "Courier" value is cut off one day prior to the "Baker" value to make sure that there
is no overlap in time. The "Butcher" value remains untouched.

For time-valid dynamic fields, the startDate attribute in the <value> element is required; the
XML schema definition does not enforce this because the same element is also used for non-
time-valid fields.

The value of a dynamic free field can be a date, number or character string. Since the schema has
no knowledge of the configuration of the field, the content of the <value> element is validated
by the integration point logic. Date values must be sent in according to the xsd:date format,
i.e., YYYY-MM-DD. The decimal character for number values must be accordance with the
installation settings. If an integration point fails to parse a dynamic field value as a date, the error
message GEN-PROC-001 (Value provided is not of type Date) is generated. If an integration
point fails to parse a dynamic field value as a number, the error message GEN-PROC-002 (Value
provided is not of type Number) is generated.

OHI Components - Common Features Guide 28

The schema definition does not except empty <value> elements. In order to sent in an update
that clears all values for a particular dynamic field, the update request should include a
<dynamicField> element without a <value> element, as reflected in the following pseudo code:

<dynamicFields>
 <dynamicField
 name="occupation"/>

The following is an example for the update of a single-value non-time-valid dynamic field with
usage name "comment":

<dynamicFields>
 <dynamicField
 name="comment"
 >
 <value>Need to verify spelling of surname</value>
 </dynamicField>

3.2.2 Code Values

Update requests for code dynamic fields are handled similar to those for free fields, with the
exception of multi-valued code fields. The reason is that a code always has key field; in other
words, it is possible to pinpoint the exact code that you want to update, allowing a more subtle
update feature.

Sending in a new value for a single-value non-time-valid code field results in the replacement of
the old value with the new. Sending in a new value for a single-value time-valid code field will
delete any values with a later start date, will cut off any overlapping value with an earlier start
date, but will not touch any existing value that is end-dated before the start date of the new value.

Sending in (a) value(s) for a multi-valued non-time-valid code field can only ever result in the
addition of a new code value to the field. This happens when the update includes a code value
that is not among the existing values. Existing values (regardless of whether they are included in
the update) are left untouched.

Sending in (a) value(s) for multi-valued time-valid will add new code values if the value is not
among the existing code values for that field. In case the same code is among the existing values,
then the values (for the same code) with a later start date are deleted, the values for the same code
with an overlap and an earlier start date are cut off. Code values that are not in the update request
are left untouched.

The following pseudo XML reflects the structure of a single-value time-valid code field:

<dynamicField
 name="primaryDiagnosis"
>
 <value
 startDate="2010-05-23"
 flexCodeDefinitionCode="ICD09_V_DIAGNOSES"
 >V51
 </value>
</dynamicField>

The flexCodeDefinitionCode attribute is used to disambiguate between code definitions. This
is a fairly exceptional situation, since it is unusual for different code systems (used in the same
context) to have overlapping codes. For example, suppose the field refers to a diagnosis code and
the value is V51. Since both the ICD09 and the ICD10 code systems know a diagnosis code V51,
the <value> element needs to specify which of the two systems is the intended one.

The following XML shows an example update for a single-value time-valid code field with
consecutive values in time:

<dynamicField
 name="occupation"
 >
 <value
 startDate="2005-01-01"

OHI Components - Common Features Guide 29

 endDate="2007-12-31"
 >NURSE</value>
 <value
 startDate="2008-01-01"
 >GP</value>
</dynamicField>

3.2.3 Dynamic Records Values

Many of the entities that can be sent in through an integration point can be extended with
dynamic fields and / or dynamic records. The values for these records and fields can be
set through the integration points as well. Dynamic record values are set by using the
<dynamicRecordTables> element. The following pseudo XML snippets illustrate the structure of
this element.

<dynamicRecordTables>
 <dynamicRecordTable
 name
 >
 <row
 startDate
 endDate
 indDeleted
 >
 <column
 name
 flexCodeDefinitionCode
 />
 value
 </column>

The name in the <dynamicRecordTable> element maps on to the dynamic record usage name.
Each <row> represents a dynamic record value. The startDate and endDate are used in case the
dynamic record usage is set up to be time valid.

The indicator indDeleted of a row can be used to delete specific dynamic records. This is only
possible for dynamic record definitions where a particular column is set up to be 'key'. The
dynamic record to delete is then determined by matching the key column value in the request to
the key column values present in the database; any dynamic record with the same key value (and
the same parent data element) will be deleted. If the dynamic record definition does not specify a
key column, indDeleted cannot be used (if sent in anyway it will be disregarded).

Each <column> element sets a value in a single dynamic record. The name attribute maps on to
the dynamic record field usage code. The field usage can refer to either a field (such as a date or a
number) or a code definition (such as a diagnosis or a procedure). If it refers to a code definition,
the <column> value maps on to the key field of the code definition. The schema definition does
not allow <column> elements without a value; if a column within a record should remain blank,
no <column> element for that column should be included.

All integration points that accept dynamic record tables include a de-duplication feature. For
each <row> element, the application checks to see if an identical <row> exists in the message;
if it does, then the duplicate is removed. If the dynamic record definition specifies a key field,
then de-duplication is based on the key field value alone. For time valid dynamic records, de-
duplication is based on the combination of the key field and the start date. If no key field is
specified, a <row> is considered a duplicate when all field values in the record are the same as in
another record.

The following table describes the update behavior of dynamic records through integration points.
The assumption is that one or more dynamic record values are already present in the database
when the request is processed. The behavior differs based on whether the dynamic record usage
allows for multiple values, time valid records and/or has a functional key field.

Specifying a <dynamicRecordTable> element without any <row> element will clear all dynamic
records for that particular usage. In case the request does include (a) <row> element(s) then the
following logic applies:

Multi Time Key Update behavior

OHI Components - Common Features Guide 30

N N N Replace the existing
record with the new

N N Y Replace the existing
record with the new

Y N N Replace all existing
records with the new
record(s)

Y N Y Existing records with a
key value that matches
the key of a record in the
request are replaced.
Existing records with
a key value that is not
in the request remain
untouched.

N Y N Existing records with the
same or later start date
are removed
The existing overlapping
record with an earlier
start date is cut off
All other existing records
remain untouched

N Y Y Existing records with the
same or later start date
are removed
The existing overlapping
record with an earlier
start date is cut off
All other existing records
remain untouched

Y Y N The earliest start date of
the records in the request
message is considered
to be the as-of-date from
which point onwards
only the records included
in the request message
are valid. Existing
records that overlap in
time are ended or deleted
automatically:

• Existing records
that start before
and end on or
later than the as-
of-date, are ended
one day prior to
the as-of-date.

• Existing records
that start on or
later than the
as-of-date are
deleted.

All other existing records
remain untouched

OHI Components - Common Features Guide 31

Y Y Y Existing records with the
same key value and with
the same or later start
date are removed
The existing overlapping
record with the same key
value and with an earlier
start date is cut off
All other existing records
remain untouched

3.3 File Based Integration

In the following cases, data can be loaded into OHI Claims using files (bulk or batch processing):

• Diagnoses

• Procedures

• Product Definitions

• Consumption Batch Import

• Fee Schedules

• Provider Pricing Clauses

3.3.1 File Import Batch Processing Request

Batch processing of the contents of a file starts with placing the file that is to be processed
in a 'input file directory' and by subsequently informing OHI Claims that a file is ready for
processing. The latter is done using the File Import Web Service for which the WSDL is typically
available at the following address:

http://machine.domain:port/ohi-web-services/FileImportService/
fileImport.wsdl

The fileImportRequest method of the File Import Web Service takes a message that adheres to the
FileImport.xsd specification. A sample message looks like this:

<fileImportRequest xmlns="http://healthinsurance.oracle.com/ws/
fileimport/v3">
 <filePath>/diagnoses/2009/diagnosesCodesOct.xml</filePath>
 <importProcess>diagnosesImport</importProcess>
 <responseFilePath>/diagnosesResponses/diagnosesCodesOct.xml</
responseFilePath>
 <successFilePath>/successDiagnosesResponses/
diagnosesCodesOct.xml</successFilePath>
 <failureFilePath>/failureDiagnosesResponses/
diagnosesCodesOct.xml</failureFilePath>
</fileImportRequest>

Explanation of the elements in the message:

• The required element filePath specifies the relative path to the file that needs to be processed.
It will be prepended with the value of system property ohi.ws.fileimport.filesrootdirectory.

• The required element importProcess identifies the process to be used for importing the data.
If an invalid process name is used then the system reports error GEN-FILE-013 in the file
import response message. The following import processes are supported:

• diagnoses

• procedures

• productDefinition

• writeConsumptionBatchRequest

OHI Components - Common Features Guide 32

• feeScheduleBatchRequest

• The required responseFilePath element specifies the relative path to a response file that is
generated by OHI Claims as a result of processing the data in the file that is to be processed.
It will be prepended with the value of system property ohi.ws.fileimport.filesrootdirectory.

• The optional successFilePath element specifies the relative path to which the input file
that was processed will be moved by OHI Claims after successfully processing the data
in the input file. The relative path will be prepended with the value of system property
ohi.ws.fileimport.filesrootdirectory. If the successFilePath element is not specified, OHI
Next does not move the input file after its contents were successfully processed.

• The optional failureFilePath element specifies the relative path to which the input file
that was processed is moved by OHI Claims after unsuccessfully processing the data
in the input file. The relative path will be prepended with the value of system property
ohi.ws.fileimport.filesrootdirectory. If the failureFilePath element is not specified, OHI
Claims does not move the input file after its contents were unsuccessfully processed.

In case given directories are not available, the system will attempt to create these. A file import
job will not be started when the responseFilePath did not exist and could not be created; the
response message will indicate a failure. When either a successFilePath or failureFilePath is
specified and these did not exist or could not be created, the file import job will not be started
either. Again, the response message will indicate the failure.

As soon as the message is received by OHI Claims, it will be queued for processing. File import
messages are processed in the order of delivery.

3.3.1.1 Allowed characters for File Paths

For security reasons, not all characters that can normally be used in file names are allowed.
Characters that are allowed in a file name are:

• platform-specific file separator, i.e. "/" on Unix and "\" for Windows platforms

• alphanumeric characters: a - z, A - Z, 0 - 9

• spaces

• dots

• hyphens and underscores

If any other character is detected, a GEN-FILE-009 error is returned and the File Import process
fails.

If the input file cannot be detected or is not readable, a GEN-FILE-004 error is returned and the
File Import process fails.

3.3.2 Response File and Process Completion Notification

With batch processing, there is one response per batch that is submitted even though a batch
request message may in effect consists of multiple (main-level) items that are relatively
independent of each other. Each response message indicates how many (main-level) items were
successfully processed and contains task messages for the individual (main-level) items that have
them. Batch response messages are stored in a file and referenced from a response notification
message.

As a result of File Import batch processing, OHI Claims creates an XML response file containing
the results of the import process. When the import process completes and the response
file is generated, OHI Claims delivers a fileImportResponse message that adheres to the
FileImportResponse.xsd specification. A sample message looks like this:

<fileImportResponse xmlns="http://healthinsurance.oracle.com/ws/
fileimport/v3">
 <result>S</result>
</fileImportResponse>

OHI Components - Common Features Guide 33

The result element specifies the result of processing the input file. Its value can be either S (for
success) or F (for failure).

The system uses WS-Addressing properties to determine the Web Service endpoint to which
the response message should be delivered and how it relates or correlates to the initial request
message. OHI Claims supports WS-Addressing version 1.0 (May 2006). In accordance with
that standard, the response message is delivered to the Web Service endpoint that is identified
by the ReplyTo address property in the initial SOAP request message. The RelatesTo property
is populated with the value of the MessageID that was specified in the initial SOAP request
message.

The Web Service for delivering the process completion notification is not delivered as
part of OHI Claims.

An import fails when either:

• An exception occurred during processing of the contents of a file

• The input file could not be moved or an exception occurred when moving the file

3.3.3 Interface Task Log

The results of the batch process are maintained in a Task Message Log. This log can be accessed
through a look-up page. Access to data for a certain File Import batch job are accessible by
process name or through the MessageID. The response file is created from the information in the
Task Message Log.

OHI Claims does not clean the Task Message Log automatically.

3.4 Service Based Integration

Next to File Based Integration (page 31), OHI Components applications support service
based integration using the following messaging patterns:

• OHI Components Web Services

• Synchronous message processing (request-response): standard two-way message
exchange where a response message immediately follows the inbound request (using the
same socket for communication).

• Asynchronous message processing: an inbound request is not immediately processed;
the response message is delivered after processing to the endpoint address specified by
the client at the time of sending the request.

• OHI Components as Client (calling external services)

• Synchronous Message Processing (request-response): similar to inbound requests,
OHI Components applications expect the response to immediately follow its outbound
request (using the same socket for communication).

• Asynchronous message processing: an outbound request will not be processed
immediately; the response message should be delivered after processing to the endpoint
address that is specified by OHI Components applications at the time of sending the
request.

OHI Components - Common Features Guide 34

3.4.1 OHI Components Web Services

3.4.1.1 Synchronous Message Processing

If a request is received and the ohi.ws.<integration_point>.request.validate property for the
specific Integration Point is set to true, the message is validated to check if it adheres to the XSD
specification. If the request is not valid, a SOAP fault will be returned and the message is not
processed. The validity check is not performed if the ohi.ws.<integration_point>.request.validate
property is set to false.

A synchronous request is processed immediately. The result of processing the request message is
returned to the client immediately after processing. The format of the response message adheres
to the message specification that is dictated by the WSDL specification of the web service.

As the response message contains details of the results of processing the request, the Task
Message Log is not written to in case of synchronous message processing.

Examples of synchronous web services are the Relation integration point and the Provider
integration point.

3.4.1.2 Asynchronous Message Processing

Also in case of an asynchronous request, the message is validated to check if it adheres to the
XSD specification. If not, a SOAP fault will be returned immediately. The message is not
processed.

Valid requests are queued and will be processed in the order in which these were queued as soon
as system resources are available.
Similar to File Based Integration (page 31), WS-Addressing is used to determine:

• To which endpoint URI the response message should be delivered. This is determined by the
client and passed as the WS-Addressing replyTo address in the request message.

• How the request and response are correlated. The response message contains the WS-
Addressing relatesTo identifier that the client program can use to correlate the response with
the original request. The relatesTo attribute holds the client-generated messageId value that
was passed in the request.

Passing a valid replyTo address URI and a messageId that is unique for the specific IP is the
responsibility of the calling system.

In case of asynchronous message processing, result messages are written to the Task Message
Log. These are passed in the response message and may also be retrieved using the messageId
value.

An example of an asynchronous web service is the ClaimsIn integration point.

3.4.2 OHI Components as Web Service Client (outbound requests)

For external SOAP Web Services that are called from OHI Components applications the
contracts are specified by Oracle. In order for the system to successfully connect to an external
service, the contract must be implemented and the Web Service must be available.

3.4.2.1 Synchronous Message Processing

OHI Components applications execute synchronous calls to external services (outbound
requests). The endpoint for the Web Services is specified as property in the application's
properties file. The format of an endpoint property is ohi.<integration_point>.endpoint.request.
For a synchronous request OHI Components applications expect an immediate response.

Other properties relevant for synchronous outbound requests are the following:

• ohi.ws.client.connectiontimeout: the timeout period that OHI Components applications use
to establish a connection to an external service. It is specified in milliseconds; a value of 0

OHI Components - Common Features Guide 35

means never timeout, in that case OHI Components applications will wait (indefinitely) until
the connection is established.
For example, a value of 6000 means that OHI Components applications will wait for 6000
milliseconds to establish a connection. If a connection is not established before that period
expires, OHI Components applications will flag the service as being unavailable. The task
for which the request needed to be send ends in an error state and can be retried / recovered
from the "View Technical Errors" screen.

• ohi.ws.client.readtimeout: once a connection is established and the request is sent, this
property specifies the timeout period OHI Components applications will wait for the server
to respond to the request. It is specified in milliseconds; a value of 0 means never timeout, in
that case OHI Components applications will wait (indefinitely) until a response is received.
For example, a value of 6000 means that OHI Components applications will wait for a
response for 6000 milliseconds after the connection was established. If a response is not
received before that period expires, OHI Components applications will flag the service as
being unavailable. The task for which the request needed to be send ends in an error state and
can be retried / recovered from the "View Technical Errors" screen.

• ohi.ws.client.retrytimeout: OHI Components applications keep track of the state of external
web services. In case a request to an external service fails (either the connection times out or
the response is not received before the readtimeout expires) OHI Components applications
register the service as being unavailable. OHI Components applications will not attempt
to send other requests to the same service within the specified retrytimeout time frame
(measured from the moment the service failed for the first time).
If a service is registered as being unavailable,OHI Components applications send a
notification to inform a system administrator so that appropriate action can be taken. Note: if
a service is not available for a long time and the service is used with a high frequency, a low
value for this property effectively means that OHI Components applications will send many
notifications.
A value of 0 means that OHI Components applications attempt to send each request.
If the external service is not available, that means that the time that is set for the
ohi.ws.client.connectiontimeout property is lost for each attempt. On the other hand, if the
value for this property is large and the volume of requests is high then many tasks will end
up in an error state (and have to be retried / recovered from the "View Technical Errors"
screen).

An example of a synchronous outbound web service is the Claim Event integration point.

3.4.2.2 Asynchronous Message Processing

OHI Components applications can also execute asynchronous calls to external services (outbound
requests). As is the case for synchronous services, the endpoint for an asynchronous external
 Web Services is specified as property in the application's properties file. The format of an
endpoint property is ohi.<integration_point>.endpoint.request.

In accordance with the WS-Addressing standard, for an asynchronous request OHI Components
applications expect the external system to deliver the response to the OHI Components
application endpoint for which the URL is given in the request using the same messageId.

For asynchronous requests, the ohi.ws.client.connectiontimeout and ohi.ws.client.retrytimeout
properties apply.

3.5 Interface Messages Log

3.5.1 Result Messages

Result messages refer to errors, warnings, or informational messages that result from batch,
asynchronous and synchronous single message processing. Result messages are categorized as
internal or external and are written to the Interface Messages Log (see below). The message code
and text of external result messages may be included in response messages.

OHI Components - Common Features Guide 36

Each result message corresponds to a message definition that specifies the standard message text
and possibly substitution parameters. Result messages for batch processes may be at batch level
(for messages that do not apply to a specific main-level request message element) or at main-
level element level (in which case a main-level element code / id is included as a substitution
parameter so that messages can be matched to a main-level element). Likewise, messages that
are specific to an item of a list are expected to include code / id as a substitution parameter so that
messages can be matched to the item that they relate to.

Result message definitions include a notification indicator that indicates if, when a result message
corresponding to the definition occurs during batch processing, a failure notification should be
sent.

Message definitions are maintained in table OHI_MESSAGES.

3.5.2 Interface Messages Log

An interface message log is maintained in the database. It is written to during batch,
(asynchronous and synchronous) single message processing and for some UI related operations.
For each operation an interface message entry is created which may have zero, one or more
details. The structure of the interface messages log is listed in the following sub-paragraphs.

3.5.2.1 Interface Message

Interface Messages carry the following details:

Attribute Asynchronous Single
Message

Batch Synchronous Single
Message

Subtype ASYNC BATCH SYNC

Task Id Identifier of the system
task that was created for
processing the request

n/a n/a

Job Instance Id n/a Reference to the job
execution id

n/a

Correlation Id WS-Addressing
messageId as given by
the client that called the
web service for invoking
the asynchronous process
(external identifier)

WS-Addressing
messageId as given by
the client that called the
web service for invoking
the batch process
(external identifier)

n/a

Service Name IP name. This is the
same name that appears
for the service in the
WebLogic Console.

n/a IP name. This is the
same name that appears
for the service in the
WebLogic Console.

Operation Name IP operation name as it
appears in the WSDL.

Batch job name IP operation name as it
appears in the WSDL.

Request Received Time The time that processing
of the request started

The time that processing
of the batch request
started

The time that processing
of the request started

Request Processed Time The time that processing
of the request finished

The time that processing
of the batch request
finished

The time that processing
of the request finished

Request Message Original request message
payload that was
received

Original request
notification message
(containing link to file
that contains the actual
request message) that
was received.

Original request message
payload that was
received

Response Message Response message that
was sent.

Response notification
message (containing link
to file that contains the
actual response message)
that was sent.

Response message that
was sent.

OHI Components - Common Features Guide 37

Result Code 'F' if message not
processed successfully,
'S' if processed
successfully.

'F' if message not
processed successfully,
'S' if processed
successfully.

'F' to indicate that
message is not
processed successfully.
Synchronous messages
that were processed
successfully are not
logged.

3.5.2.2 Interface Message Details

Zero, one or more interface message details may be logged for an interface message. The
structure of the interface message details is listed in the following table:

Attribute Description

Interface Message Id Reference to Interface Message

Element Id From message elementId attribute (only if result
message relates to a main-level element in a batch
file - otherwise n/a)

Message Code Code of the message

Message Text Descriptive text of the message with values
substituted for the placeholders

Message Detail Additional 'technical' detail (e.g. stack trace).
Optional.

Processing of a message failed if a message code is logged that is classified as Fatal.

Note that in case of synchronous single messages only failures are logged. This is done to make
message processing more efficient. The idea of not logging successfully processed messages is
that the absence of a failure implies success. If processing the request was successful, the audit
columns for the entity reflect the change.

3.5.3 Interface Messages Log UI page

To track message processing read-only UI pages are provided:

• An overview page that shows two sections with aggregated information, one for service
messages and one for batch messages.

• Two pages that provide message details service and batch processes respectively.

The overview page allows filtering by date range; by default it will query results for the last day.
The numbers are aggregated by service name, operation name and subtype. From the overview
page it is possible to click through to a page that shows details for all requests of the selected
IP or Batch process. The latter page also provides access to the request and response message
payloads.

Messages resulting from UI operations are stored in the interface message log but are not visible
through the interface messages log UI pages. Instead these are shown in specific UI pages.

3.6 Data Set Operations Integration Point

This integration point allows the user to generate the payload for a particular data set and or/and
start the import for a data set. The purpose of this integration point is to allow the coordination of
data sets between application environments without having to access the application screens.

This section refers to the environment that loads the data set as the 'target' environment. The
environment on which the data set is generated is referred to as the 'source' environment.

This integration point supports the handling of data sets that belong to the definitions
CLAIMS CONFIGURATION, CLAIMS_PROVIDERS, CLAIMS_PROCEDURES and
CLAIMS_DIAGNOSES.

This integration points consists of six operations:

OHI Components - Common Features Guide 38

• Stop Dequeue

• Start Dequeue

• Build Data Set

• Save to File

• Import From File

• Import From Environment

3.6.1 Operation Requests

3.6.1.1 Stop Dequeue

This request stops claims from entering the claims flow. Note that claims that are already in the
flow continue to be processed.

<stopDequeue/>

3.6.1.2 Start Dequeue

This request tells the application to accept new claims for processing.

<startDeqeueue>

3.6.1.3 Build Data Set

This request is sent to the source environment. It creates (or overwrites) the XML payload for a
data set.

<buildDataSet
 dataSetDefinitionCode
 dataSetCode
 inclusionDate
 />

The application sends back a web service response either when the build fails or when the
payload generation is complete.

<buildDataSetResponse>
 <resultMessages
 result
 >
 <resultMessage
 code
 > message text

The following error messages can be returned in the web service response:

Code Sev Message

OHI-IP-DATA-001 Fatal Unknown combination of data
set code {code} and data set
definition code {code}

GEN-MIGR-008 Fatal It is not possible to start a new
build while another build or
import is in progress

GEN-MIGR-010 Fatal It is not possible to start a build
with empty data set

3.6.1.4 Save to File

This request is sent to the source environment. It saves the data set to the specified file path.

<saveToFile

OHI Components - Common Features Guide 39

 dataSetCode
 dataSetDefinitionCode
 filePath
/>

The application sends back the following response:

<saveToFileResponse>
 <resultMessages
 result
 >
 <resultMessage
 code
 > message text

Code Sev Message

GEN-FILE-001 Fatal Directory does not exist or is not
accessible: {directory}

OHI-IP-DATA-001 Fatal Unknown combination of data
set code {code} and data set
definition code {code}

OHI-IP-DATA-003 Fatal This data set has not been built
yet.

3.6.1.5 Import From File

This request is sent to the target environment. It starts an import with the file's content as the
payload.

<importFromFile
 filePath
 dataSetDefinitionCode
 responseFilePath
/>

The application sends back a response either when the import fails or when the import is
complete. The web service response only contains messages in case the input file cannot be read
or the response file not be written to.

<importResponse>
 <resultMessages
 result
 >
 <resultMessage
 code
 > message text

The following error messages can be returned in the web service response. These are messages
that prevent the import from happening.

Code Sev Message

GEN-FILE-001 Fatal Directory does not exist or is not
accessible: {directory}

GEN-FILE-004 Fatal Input file path does not exist
{inputFilePath}

GEN-FILE-009 Fatal File / Directory contains non
permitted characters

GEN-MIGR-007 Fatal Import file must have a .zip
extension

GEN-MIGR-009 Fatal It is not possible to start a new
import while another build or
import is in progress

OHI Components - Common Features Guide 40

OHI-IP-DATA-004 Fatal Unknown data set definition code
{code}

The response file contains the messages that relate to the imported content.

3.6.1.6 Import From Environment

This request is sent to the target environment. It starts the retrieval of the data set from the source
environment and starts the import on the target environment.

<importFromEnvironment
 sourceEnvironment
 dataSetDefinitionCode
 dataSetCode
 responseFilePath
/>

The sourceEnvironment attribute should contain the SID of the source environment database

The matching response only relays messages of which the cause prevents the import from
happening. Error messages that relate to specific items in the payload end up in the response file.

<importResponse>
 <resultMessages
 result
 >
 <resultMessage
 code
 > message text

The following error messages can be returned in the web service response.

Code Sev Message

GEN-FILE-001 Fatal Directory does not exist or is not
accessible: {directory}

GEN-FILE-009 Fatal File / Directory contains non
permitted characters

GEN-MIGR-009 Fatal It is not possible to start a new
import while another build or
import is in progress

OHI-IP-DATA-001 Fatal Unknown combination of data
set code {code} and data set
definition code {code}

OHI-IP-DATA-002 Fatal Unknown source environment
{sourceEnvironment}

The response file contains the messages that relate to the imported content.

3.6.2 Response File

The response file contains the exact same messages as displayed in the pop-up in page FN0040
Inbound Data Sets - Batch process message details.

<importResponseFile>
 <resultMessages
 result
 >
 <resultMessage
 code
 > message text

Each data set definition has a specific set of error messages that can occur. Typically these
messages indicate there is an incompatibility between the items in the payload and the items that
already exist on the target environment.

OHI Components - Common Features Guide 41

For example, the claims configuration data set can return the following messages:

Code Sev Message

CLA-MIGR-001 Info Disabled fee schedule line
({fee schedule code}, {line
procedures}, {line start date})

CLA-MIGR-002 Info Disabled product benefit
specification ({product code},
{benefit specification code},
{start date})

GEN-MIGR-001 Fatal Cannot find {entity} with key
{code or usage name} used by
{entity, key}

GEN-MIGR-002 Fatal Cannot find {entity} with Code
{code} and Flex Code Definition
Code {definition code} used by
{entity, key}

GEN-MIGR-003 Fatal Cannot find OhiTable with Name
{name} used by {entity, key}

GEN-MIGR-004 Fatal Cannot find Signature with
Name {name} and Subtype
{subtype} used by {entity, key}

GEN-MIGR-005 Fatal Cannot find usage for dynamic
field or record {usage name} on
{table name} used by {entity,
key}

GEN-MIGR-006 Fatal The dynamic field usage
({name}, {table name}) is not
compatible with the existing
configuration

3.7 Result Messages

3.7.1 Indicating Success or Failure

In the responses of Integration Points, the common element <resultMessages> is included to
indicate whether or not the request message was processed successfully. This element has an
attribute called 'result' which can be either 'S' to indicate success or 'F' to indicate failure.

For example, an Integration Point's response message to a successfully processed request
message contains:

<resultMessages result='S'/>

This element is included in the root of the Integration Point's response element. It may
be included multiple times, if the request message contained multiple 'transaction units'.
The response message may then (e.g.) indicate that some transaction units were processed
successfully while processing of others failed.

3.7.2 Result Messages

Inside the element <resultMessages> (described above) there may be zero, one or more result
messages. The purpose of these messages is to clarify why a request message was not processed
successfully. The message text contains the message text in which the substitution parameters
have been set.

For example, the Claims In Integration Point's response message to a request message which
failed to process successfully could contain :

<resultMessages result='F'>
 <resultMessage code='CLA-IP-CLAI-010'>

OHI Components - Common Features Guide 42

 CLA-IP-CLAI-010: The specified product code ABC is unknown
 </resultMessage>
</resultMessages>

Result messages are common or specific:

• Integration Point Specific messages can only occur in the response of a specific Integration
Point. Such messages are described in the description of the concerned Integration Point. The
example above shows a result message specific to the Claims In Integration Point.

• Messages common across Integration Points can occur in the responses of many
Integration Points. These messages relate to common functionality, like the use of dynamic
fields. These message are described below.

Messages common across Integration Points:

Code Severity Message

GEN-ACRE-001 Fatal Access restriction code {code} is unknown. Request cannot be processed

GEN-TRAS-001 Fatal A reference may only be provided in combination with a transaction
source

GEN-TRAS-002 Fatal Transaction source code {code} is unknown

GEN-CURR-001 Fatal Currency code {code} is unknown

GEN-DYNA-001 Fatal The dynamic field: {dynamicFieldUsageName} should have unique
values. There is already a record with value: {value}

GEN-DYNA-002 Fatal {dynamicFieldUsageName}: There is already a value present in this
period of time ({startDate} - {endDate})

GEN-DYNA-003 Fatal Cannot insert same value for the flex code in case the dynamic field is
multivalue

GEN-DYNA-004 Fatal Dynamic field {dynamicFieldUsageName} is not time valid. Request
cannot be processed

GEN-DYNA-005 Fatal Dynamic field {dynamicFieldUsageName} may have only one single
value. Request cannot be processed

GEN-DYNA-006 Fatal Dynamic field flex code definition code {code} is unknown. Request
cannot be processed

GEN-DYNA-007 Fatal The flex code {code} is unknown to dynamic field
{dynamicFieldUsageName}. Request cannot be processed

GEN-DYNA-008 Fatal Dynamic field name {dynamic field usage name} is unknown. Request
cannot be processed

GEN-DYNA-010 Fatal {dynamicFieldUsageName} should have a value and a {startDate}

GEN-DYNA-011 Fatal {dynamicFieldUsageName} value {value} does not belong to flex code
definition {code}

GEN-DYNA-012 Fatal {dynamicFieldUsageName}: the same value {value} is present in another
period ({startDate} - {endDate})

GEN-DYNA-013 Fatal Only one value allowed for {dynamicFieldUsageName}

GEN-DYNA-015 Fatal The field {dynamicFieldUsageName} is not allowed to be empty

GEN-DYNA-016 Fatal Dynamic Record Definition with type {dynamicFieldUsageName} could
not be found

GEN-DYNA-017 Fatal Dynamic record definition {dynamicFieldUsageName} does not define
field {flexCodeFieldUsageCode}

GEN-DYNA-018 Fatal Usage {dynamicFieldUsageName} can only have a record when the
condition defined evaluates to true

GEN-DYNA-019 Fatal Usage {dynamicFieldUsageName} should have at least one record

GEN-DYNA-020 Fatal Key field {flexCodeFieldUsageCode} should have unique value for
Dynamic record {dynamicFieldUsageName}

OHI Components - Common Features Guide 43

GEN-DYNA-021 Fatal Dynamic Records should specify the value for key field. Dynamic
Record {dynamicFieldUsageName} does not specify value for key
{flexCodeFieldUsageCode}

GEN-DYNA-022 Fatal Dynamic record {dynamicFieldUsageName} is not time valid. Request
cannot be processed

GEN-PROC-001 Fatal Value provided is not of type Date

GEN-PROC-002 Fatal Value provided is not of type Number

Besides these messages, business rule messages may also occur in the responses of Integration
Points. Business rule messages are raised in the validation layer of OHI Components
applications and are common to both the User Interface Pages and the Integration Points. For
example, business rule GEN-TMVL-001: "The start date should lie before the end date for
{dynamicFieldUsageName}".

Lastly, technical error messages may be returned through the responses of Integration Points.
For example, database message GEN-ORA-01400: "DESCR" column is mandatory for table
"PRI_FEE_SCHEDULES".

3.8 Integration Testing

Testing an application in a Services based environment requires the services to be available
during certain tests. These services can be provided by real systems, or by simulation. A system
that simulates an external system is referred to as a test double or mock service.
Before the OHI Claims flow can be tested, a certain amount of data will need to be available in
OHI Claims. In this section, these are categorized as Prerequisite services. The services that are
required during Flow testing are categorized as Operational services.

3.8.1 Environment for Prerequisite Services

The diagram below shows the services that can be tested individually. They are not necessarily
connected to the Claims flow.

3.8.2 Environment for Operational Services

The diagram below shows the services required for testing the Claims flow.

OHI Components - Common Features Guide 44

3.9 Web Service Versioning

When customers start to integrate with OHI Components applications Web Services, there is a
need for versioning these. Parts of a Web Service that are likely to change and for which version
control needs to be put in place are:

• The (abstract) WSDLs; these are typically fairly stable.

• The XML Schema content that describes the types for the service's message definitions;
these are more likely to change.

3.9.1 Compatibility

A new version of a Web Service contract that continues to support client software that was
designed to work with the previous version is said to be backward-compatible. Examples of
backward-compatible changes to an XSD are:

• The addition of an optional element.

• Changing an existing element from being required to optional.

These have no impact on existing consumers of the service.

If a contract changes in such a way that it can no longer be used by existing consumers of
the service without making changes to the consumer programs, it is an incompatible change.
Examples of incompatible changes are:

• Renaming or removing an existing WSDL operation.

• Adding a new required XML Schema element or attribute to a message definition.

• Renaming an optional or required XML Schema element or attribute in a message definition.

• Removing an optional or required XML Schema element or attribute from a message
definition.

3.9.2 Flexible Versioning Strategy

The selected versioning strategy is known in the literature as Flexible. Any incompatble change
results in a new version of the service contract and the contract is designed to support backwards
compatibility. Any change that breaks the existing contract results in a new version.

OHI Components - Common Features Guide 45

For XML Schema's and WSDLs versions are identified using a major and minor version in
notation "major.minor". Conventions according to the compatibility guarantee:

• A minor version is expected to be backward compatible with other minor versions that are
associated with a major version.

• A major version breaks backward compatibility.

The versioning strategy for SOAP services used by OHI Components applications can be
characterized as follows:

• A compatible change leads to a minor change of the version number. The namespace(s)
remain unchanged, hence supporting backward compatibility.

• An incompatible change leads to a major change of the version number.

• Major versions will be identified in XML namespaces of top-most XML schemas (and later
WSDLs). As a result, a major change will require applications that use the schema or web
service to be upgraded.

Version identification example:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:dt="http://healthinsurance.oracle.com/datatypes" xmlns="http://
healthinsurance.oracle.com/fileimport/v1"
targetNamespace="http://healthinsurance.oracle.com/fileimport/v1"
elementFormDefault="qualified" attributeFormDefault="unqualified"
 version="1.0">

For a compatible change, only the version number will be affected whereas the namespace
declarations remain unchanged:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:dt="http://healthinsurance.oracle.com/datatypes" xmlns="http://
healthinsurance.oracle.com/fileimport/v1"
targetNamespace="http://healthinsurance.oracle.com/fileimport/v1"
elementFormDefault="qualified" attributeFormDefault="unqualified"
 version="1.1">

An incompatible change results in changes to both the version number as well as the version
identifier in the namespaces:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:dt="http://healthinsurance.oracle.com/datatypes" xmlns="http://
healthinsurance.oracle.com/fileimport/v2"
targetNamespace="http://healthinsurance.oracle.com/fileimport/v2"
elementFormDefault="qualified" attributeFormDefault="unqualified"
 version="2.0">

Note that the DataTypes schema that holds re-usable simple and complex types, does not have
a version identifier. The types in there are re-used often and existing types are expected to be
stable. Given the amount of re-use in all OHI SOAP Services, it is not likely for types declared in
DataTypes.xsd to be removed.

3.9.3 Resolving Version Conflicts across Releases

Consider the following versions for the ClaimImport.xsd in distinct releases of an application:

Release XSD Version

2.12.1.0.0 1.0

2.12.2.0.0 1.1

OHI Components - Common Features Guide 46

That means that the ClaimImport.xsd was changed (backward compatible or minor change) from
release 2.12.1.0.0 to 2.12.2.0.0. If another minor change is required on both these versions that
could (in theory) result in the following situation:

Release XSD Version

2.12.1.0.1 1.1

2.12.2.0.1 1.2

To reflect the change in the ClaimImport.xsd in both versions of the application the minor
version indicator in either release would be incremented. The result is that the ClaimImport.xsd
in releases 2.12.2.0.0 and 2.12.1.0.1 has the same version number; that would wrongfully indicate
that the XSDs in these versions are similar.

This (rare) versioning conflict is resolved by introducing a third indicator, referred to as revision
in notation "major.minor.revision". Thus, the result would be:

Release XSD Version

2.12.1.0.1 1.0.1

2.12.2.0.1 1.2

OHI Components - Common Features Guide 47

4 HTTP API Integration Points

4.1 HTTP API resources in an OHI Components application

The context root for any HTTP API resource in an OHI Components application is "/api". An
overview of all HTTP API resources available in a running system is available under "/api/doc".

The page that is generated also provides access to RAML specifications for each resource.
RAML stands for RESTful API Modeling Language. A RAML document is a formal
specification of an HTTP API that is readable by both humans and computers. In many cases the
RAML specification contains usage examples for the methods that are supported by the API.

4.2 Attribute Handling

Each integration point request message contains data values of a root element (e.g. organization
or organization provider) that have been created or updated in a source system. Within each
message are several categories of data such as simple entity-level attributes, lists of non-time
valid details and lists of time-valid details, dynamic fields and dynamic records. This section
describes how each category of data is handled by OHI applications and also covers guidelines
for handling differences in data categories between source systems and OHI applications.

The way that an OHI application handles requests is based on the principle that the copy of
information in the OHI application is to be kept up-to-date with the (master) information in the
system of record. It is not required that the OHI application is informed of every update in the
system of record; only the values at the time of creating the requests are important. For example,
if an interface periodically creates requests for all outstanding additions and updates, only the
values of source system data at the time that the interface is run, need to be sent. Whether a
record has been updated several times or once since the last interface run is irrelevant.

If an existing record is sent again and it contains the exact same data that is already stored in the
system, the existing data will not be updated. This means that the audit columns in the database
will also remain unchanged.

4.2.1 Single Value Attributes

Single value attributes are fields that can have only one single value and the value does
not have a start and end date. Single value attributes can be represented in the requests as
attributes (for example name in the organizationProvider request) or as elements (for example
parentOrganizationProvider in the organizationProvider request). When the application creates a
new record, single value attributes are handled as follows:

• Represented as attributes: if the attribute is not included in the request, then the value of the
corresponding attribute in the new record will be set to null; if the attribute is included in the
request, then the corresponding attribute in the new record will be set to the specified value.

• Represented as elements: if the element is not included in the request, then the value of the
corresponding attribute in the new record will be set to null; if the element is included in the
request, then the corresponding attribute in the new record will be set to the specified value.

When the application updates a record, a single value attribute is handled as follows:

• Represented as attributes: if the attribute is not included in the request, then the existing
value in the application remains untouched; if the attribute is included in the request, then the
attribute value is updated with the specified value. In order to send in an update that clears
the value, the update request should include the attribute with an empty value.

OHI Components - Common Features Guide 48

• Represented as elements: if the element is not included in the request, then the existing value
in the application remains untouched; if the element is included in the request, then the
attribute value is updated with the specified value. In order to send in an update that clears
the value, the update request should include the element without any attributes and values
(empty element).

For example, consider a new organization being added in the system of record. Because the OHI
application keeps a local copy of organization records, the system of record sends the following
request to the OHI application:

<organization
 code="1333"
 name="Jones Administration"
 outputLanguage="en"
 businessPhoneNumber="0301111111"
/>

Since this is the first time that the organization with code "1333" is being sent, the OHI
application creates a new organization record (relation of subtype organization) with only code,
name, language and business phone number having values. All other attributes in the new record
in the OHI application will be null. The organization is updated in the source system; the business
phone number is changed from "0301111111" to "0301111112". The system of record sends the
following request to the OHI application:

<organization
 code="1333"
 businessPhoneNumber="0301111112"
/>

Since there is already an organization with this code, the OHI application will update the
organization record with code "1333", setting the business phone number to "0301111112". The
name and the language will not be changed or set to null.

External Interface Design Notes

If a given type of data is a single value attribute in an Integration Point message definition and
a time valid detail list in the source system, the external interface is expected to only send the
latest / current value.

If a given type of data is a single value attribute in an Integration Point message definition and a
non time valid detail list or otherwise not a one-to-one match in the source system, the external
interface will require (dynamic) logic needed to determine what value should be provided.

4.2.1.1 Amount and Currency

Amount and currency are two attributes that belong together, so they are always represented
together in a separate element. For example:

<authorizedAmount
 amount="100"
 currencyCode="USD"
/>

If the element is not included in the request, then the existing values for amount and currency in
the application remain untouched; if the element is included in the request, then the values are
updated with the specified values. In order to send in an update that clears the values, the update
request should include the element without any attributes and values (empty element).

4.2.2 Details

Details can be non time valid (i.e. each detail record does not have start and end dates) such as
provider titles. Details can also be time valid (i.e. each item of the list has a start and an end date),
such as provider group affiliations. Both types of details are handled as follows:

When the OHI application creates new records (for an entity with a detail list):

OHI Components - Common Features Guide 49

• If the detail list element is not included, no details are added

• If a detail list element is included, one detail record for each included detail item is created

When the OHI application is updating an existing record (for an entity with a detail list):

• If the list element is not included, no changes to current details are made

• If a list element is included, included detail items completely replace current detail records
(in effect, all current detail records that have not been resent (i.e. for which there is no detail
item with exactly matching values) are removed and one detail record for each included
detail item (that is not a 'resend') is created)

• Note that completely replacing an existing list can have a different meaning depending
on the root element. Provider group affiliations can for example be specified for root
element organization provider or for root element provider group. If specified for an
organization provider, it means that all provider group affiliations of that provider (in all
provider groups) are replaced by the new list. If specified for a provider group, it means
that all provider group affiliations of that provider group are replaced by the new list.

• If an empty list element is included, all current detail records are removed.

4.2.3 Dynamic Fields and Records

This section describes the default behavior of integration points that accept dynamic field and
record values. The configuration of the relevant dynamic field usages drive how the integration
point processes a request with new dynamic field and record values. The driving aspects are the
usage type (field, code or record), whether the field can have multiple values and whether the
field value is time valid.

4.2.3.1 Dynamic Fields

Dynamic field values can be created and updated through integration points. How the values are
supplied in the request messages depends on the way the dynamic fields are configured in the
application. Dynamic fields can be configured as:

• Single-Value Non-Time-Valid

• Single-Value Time-Valid

• Multi-Value Non-Time-Valid

• Multi-Value Time-Valid

4.2.3.1.1 Single-Value Non-Time-Valid Fields

Message Definition

A single-value non-time-valid free field is represented as an attribute of the element it belongs
to, with the name of the attribute being the same as the corresponding dynamic field usage name.
The same applies to a single-value non-time-valid flex code field that is configured as a flex code
definition.
A single-value non-time-valid flex code field that is configured as a flex code set is represented
as a sub-element of the element it belongs to, with the name of the sub-element being the same
as the corresponding dynamic field usage name. The sub-element has flexCodeDefinitionCode as
attribute and the dynamic field value as text content.

Update Behavior

When the application updates a record, a single-value non-time-valid free field and a single-value
non-time-valid flex code field that is configured as a flex code definition are handled as follows:
if the attribute is not included in the request, then the existing value in the application remains
untouched; if the attribute is included in the request, then the value is updated with the specified
value. In order to send in an update that clears the value, the update request should include the
attribute with an empty value.

OHI Components - Common Features Guide 50

A single-value non-time-valid flex code field that is configured as a flex code set is handled as
follows when updating a record: if the element is not included in the request, then the existing
value in the application remains untouched; if the element is included in the request, then the
value is updated with the specified value. In order to send in an update that clears the value, the
update request should include the sub-element without the flexCodeDefinitionCode attribute and
the text content.

Examples

Consider the example below of an individual provider request message for the creation of a new
individual provider, where the following dynamic field usages are configured on the providers
table:

• dateOfBirth: single-value non-time-valid free field

• married: single-value non-time-valid flex code field (configured as a flex code definition)

• specializedProcedure: single-value non-time-valid flex code field (configured as a flex code
set)

<individualProvider
 code="1234567890"
 flexCodeDefinitionCode="US_PROVIDER"
 name="Smith"
 nameFormatCode="NFDFLT"
 outputLanguageCode="EN"
 startDate="2010-01-01"
 dateOfBirth="1975-06-06"
 married="Y"
>
 <specializedProcedure
 flexCodeDefinitionCode="CPT_CODES"
 >
 33010
 </specializedProcedure>
</individualProvider>

In order to update the married value from Y to N and leave all other fixed field values and
dynamic field values intact, the following individual provider request message is used:

<individualProvider
 code="1234567890"
 flexCodeDefinitionCode="US_PROVIDER"
 married="N"
>
</individualProvider>

To clear the values of the dynamic fields that were created in the examples above, the following
individual provider request message is used:

<individualProvider
 code="1234567890"
 flexCodeDefinitionCode="US_PROVIDER"
 dateOfBirth=""
 married=""
>
 <specializedProcedure/>
</individualProvider>

4.2.3.1.2 Single-Value Time-Valid Fields

Message Definition

A single-value time-valid free field is represented as a sub-element of the element it belongs
to, with the name of the sub-element being the same as the corresponding dynamic field usage
name. The sub-element can have one or more <value> sub-elements of its own. The <value>
sub-element has startDate and endDate as attributes and the dynamic field value as text content.

OHI Components - Common Features Guide 51

The same applies to a single-value time-valid flex code field that is configured as a flex code
definition.
A single-value time-valid flex code field that is configured as a flex code set is represented
as a sub-element of the element it belongs to, with the name of the sub-element being the
same as the corresponding dynamic field usage name. The sub-element can have one or
more <value> sub-elements of its own. The <value> sub-element has startDate, endDate and
flexCodeDefinitionCode as attributes and the dynamic field value as text content.

Update Behavior

When the application updates a record, a single-value time-valid field is handled as follows: if the
sub-element is not included in the request, then the existing value(s) in the application remain(s)
untouched; if the sub-element is included in the request, then the existing value(s) is/are replaced
by the value(s) specified in the request. In order to send in an update that clears the existing
value(s), the update request should include the sub-element without any <value> sub-elements.

Examples

Consider the example below of an individual provider request message for the creation of a new
individual provider, where the following dynamic field usages are configured on the providers
table:

• contractReferences: single-value time-valid free field

• married: single-value time-valid flex code field (configured as a flex code definition)

• specializedProcedures: single-value time-valid flex code field (configured as a flex code set)

<individualProvider
 code="1234567890"
 flexCodeDefinitionCode="US_PROVIDER"
 name="Smith"
 nameFormatCode="NFDFLT"
 outputLanguageCode="EN"
 startDate="2010-01-01"
>
 <contractReferences>
 <value
 startDate="2010-01-01"
 endDate="2012-06-31"
 >
 1111
 </value>
 <value
 startDate="2012-07-01"
 >
 1112
 </value>
 </contractReferences>
 <married>
 <value
 startDate="2012-01-01"
 endDate="2012-06-31"
 >
 Y
 </value>
 </married>
 <specializedProcedures>
 <value
 flexCodeDefinitionCode="CPT_CODES"
 startDate="2010-01-01"
 endDate="2011-12-31"
 >
 33010
 </value>
 <value
 flexCodeDefinitionCode="ICD10_PROCEDURES"
 startDate="2012-01-01"
 >
 C2161ZZ

OHI Components - Common Features Guide 52

 </value>
 </specializedProcedures>
</individualProvider>

In order to replace the contract references 1111 and 1112 by contract reference1113 and leave all
other fixed field values and dynamic field values intact, the following individual provider request
message is used:

<individualProvider
 code="1234567890"
 flexCodeDefinitionCode="US_PROVIDER"
>
 <contractReferences>
 <value
 startDate="2010-01-01"
 endDate="2012-06-31"
 >
 1113
 </value>
 </contractReferences>
</individualProvider>

To clear the values of the dynamic fields that were created in the examples above, the following
individual provider request message is used:

<individualProvider
 code="1234567890"
 flexCodeDefinitionCode="US_PROVIDER"
>
 <contractReferences/>
 <married/>
 <specializedProcedures/>
</individualProvider>

4.2.3.1.3 Multi-Value Non-Time-Valid Fields

Message Definition

A multi-value non-time-valid free field is represented as a sub-element of the element it belongs
to, with the name of the sub-element being the same as the corresponding dynamic field usage
name. The sub-element can have one or more <value> sub-elements of its own. The <value> sub-
element has the dynamic field value as text content. The same applies to a multi-value non-time-
valid flex code field that is configured as a flex code definition.
A multi-value non-time-valid flex code field that is configured as a flex code set is represented
as a sub-element of the element it belongs to, with the name of the sub-element being the same
as the corresponding dynamic field usage name. The sub-element can have one or more <value>
sub-elements of its own. The <value> sub-element has flexCodeDefinitionCode as attribute and
the dynamic field value as text content.

Update Behavior

When the application updates a record, a multi-value non-time-valid field is handled as follows:
if the sub-element is not included in the request, then the existing value(s) in the application
remain(s) untouched; if the sub-element is included in the request, then the existing value(s) is/
are replaced by the value(s) specified in the request. In order to send in an update that clears the
existing value(s), the update request should include the sub-element without any <value> sub-
elements.

Examples

Consider the example below of an individual provider request message for the creation of a new
individual provider, where the following dynamic field usages are configured on the providers
table:

• contractReferences: multi-value non-time-valid free field

• hobbies: multi-value non-time-valid flex code field (configured as a flex code definition)

OHI Components - Common Features Guide 53

• specializedProcedures: multi-value non-time-valid flex code field (configured as a flex code
set)

<individualProvider
 code="1234567890"
 flexCodeDefinitionCode="US_PROVIDER"
 name="Smith"
 nameFormatCode="NFDFLT"
 outputLanguageCode="EN"
 startDate="2010-01-01"
>
 <contractReferences>
 <value>
 1111
 </value>
 <value>
 1112
 </value>
 </contractReferences>
 <hobbies>
 <value>
 Soccer
 </value>
 <value>
 Baseball
 </value>
 </hobbies>
 <specializedProcedures>
 <value
 flexCodeDefinitionCode="CPT_CODES"
 >
 33010
 </value>
 <value
 flexCodeDefinitionCode="ICD10_PROCEDURES"
 >
 C2161ZZ
 </value>
 </specializedProcedures>
</individualProvider>

In order to replace the hobbies Soccer and Baseball by hobby Basketball and leave all other fixed
field values and dynamic field values intact, the following individual provider request message is
used:

<individualProvider
 code="1234567890"
 flexCodeDefinitionCode="US_PROVIDER"
>
 <hobbies>
 <value>
 Basketball
 </value>
 </hobbies>
</individualProvider>

To clear the values of the dynamic fields that were created in the examples above, the following
individual provider request message is used:

<individualProvider
 code="1234567890"
 flexCodeDefinitionCode="US_PROVIDER"
>
 <contractReferences/>
 <hobbies/>
 <specializedProcedures/>
</individualProvider>

OHI Components - Common Features Guide 54

4.2.3.1.4 Multi-Value Time-Valid Fields

Multi-value time-valid fields are handled in the same manner as single-value time-valid fields.

4.2.3.2 Dynamic Records

Many of the entities that can be sent in through an integration point can be extended with
dynamic records. The values for these records can be set through the integration points as well.
How the values are supplied in the request messages depends on the way the dynamic records are
configured in the application. Dynamic records can be configured as:

• Single-Value Non-Time-Valid

• Single-Value Time-Valid

• Multi-Value Non-Time-Valid

• Multi-Value Time-Valid

4.2.3.2.1 Single-Value Non-Time-Valid Records

Message Definition

A single-value non-time-valid dynamic record is represented as a sub-element of the element it
belongs to, with the name of the sub-element being the same as the corresponding dynamic field
usage name. The sub-element has the dynamic record flex code field usages (representing the
columns of the dynamic record) that are configured as free fields, as attributes with the names of
the attributes being the same as the corresponding flex code field usage names. The same applies
to the dynamic record flex code field usages that are configured as flex code definitions.
Dynamic record flex code field usages that are configured as flex code sets are represented as
sub-elements of the sub-element described above, with the names of the sub-elements being the
same as the corresponding dynamic record flex code field usage names. The sub-elements have
flexCodeDefinitionCode as attribute and the dynamic field value as text content.

Update Behavior

When the application updates a record, a single-value non-time-valid record is handled as
follows: if the sub-element is not included in the request, then the existing value(s) in the
application remain(s) untouched; if the sub-element is included in the request, then the existing
value(s) is/are replaced by the value(s) specified in the request (attributes that are not in the
request are set to null). In order to send in an update that clears the existing value(s), the update
request should include the sub-element without any attributes and sub-elements.

Examples

Consider the example below of an individual provider request message for the creation of a new
individual provider, where the following dynamic field usages are configured on the providers
table:

• accreditation: single-value non-time-valid dynamic record, having the following dynamic
record flex code field usages:

• accreditationName (configured as a flex code definition)

• status (configured as a flex code definition)

• accreditationDate (configured as a free field)

• accreditedBy (configured as a flex code set)

<individualProvider
 code="1234567890"
 flexCodeDefinitionCode="US_PROVIDER"
 name="Smith"
 nameFormatCode="NFDFLT"
 outputLanguageCode="EN"
 startDate="2010-01-01"
>
 <accreditation

OHI Components - Common Features Guide 55

 accreditationName="Physical Therapy"
 status="Accredited"
 accreditationDate="2011-01-01"
 >
 <accreditedBy
 flexCodeDefinitionCode="US_PROVIDER"
 >
 1000000000
 </accreditedBy>
 </accreditation>
</individualProvider>

In order to replace the accreditation with accreditation name Physical Therapy by an accreditation
with accreditation name Speech Therapy and leave all other values intact, the following
individual provider request message is used:

<individualProvider
 code="1234567890"
 flexCodeDefinitionCode="US_PROVIDER"
>
 <accreditation
 accreditationName="Speech Therapy"
 status="Accredited"
 accreditationDate="2011-01-01"
 >
 <accreditedBy
 flexCodeDefinitionCode="US_PROVIDER"
 >
 1000000000
 </accreditedBy>
 </accreditation>
</individualProvider>

To clear the values of the dynamic record that was created in the examples above, the following
individual provider request message is used:

<individualProvider
 code="1234567890"
 flexCodeDefinitionCode="US_PROVIDER"
>
 <accreditation/>
</individualProvider>

4.2.3.2.2 Single-Value Time-Valid Records

Message Definition

A single-value time-valid dynamic record is represented as a sub-element of the element it
belongs to, with the name of the sub-element being the same as the corresponding dynamic
field usage name. The sub-element can have one or more <record> sub-elements of its own
(representing the rows of the dynamic record). The <record> sub-elements have startDate and
endDate as attributes. The dynamic record flex code field usages (representing the columns of the
dynamic record) that are configured as free fields, are represented as attributes on the <record>
sub-elements with the names of the attributes being the same as the corresponding flex code field
usage names. The same applies to the dynamic record flex code field usages that are configured
as flex code definitions.
Dynamic record flex code field usages that are configured as flex code sets are represented as
sub-elements of the <record> elements, with the names of the sub-elements being the same
as the corresponding dynamic record flex code field usage names. The sub-elements have
flexCodeDefinitionCode as attribute and the dynamic field value as text content.

Update Behavior

When the application updates a record, a single-value time-valid record is handled as follows:
if the sub-element is not included in the request, then the existing value(s) in the application
remain(s) untouched; if the sub-element is included in the request, then the existing value(s) is/
are replaced by the value(s) specified in the request (attributes that are not in the request are set

OHI Components - Common Features Guide 56

to null). In order to send in an update that clears the existing value(s), the update request should
include the sub-element without any <record> sub-elements.

Examples

Consider the example below of an individual provider request message for the creation of a new
individual provider, where the following dynamic field usages are configured on the providers
table:

• accreditations: single-value time-valid dynamic record, having the following dynamic record
flex code field usages:

• accreditationName (configured as a flex code definition)

• status (configured as a flex code definition)

• accreditationDate (configured as a free field)

• accreditedBy (configured as a flex code set)

<individualProvider
 code="1234567890"
 flexCodeDefinitionCode="US_PROVIDER"
 name="Smith"
 nameFormatCode="NFDFLT"
 outputLanguageCode="EN"
 startDate="2010-01-01"
>
 <accreditations>
 <record
 accreditationName="Physical Therapy"
 status="Accredited"
 accreditationDate="2011-01-01"
 startDate="2011-01-01"
 endDate="2011-06-06"
 >
 <accreditedBy
 flexCodeDefinitionCode="US_PROVIDER"
 >
 1000000000
 </accreditedBy>
 </record>
 <record
 accreditationName="Occupational Therapy"
 status="Accredited"
 accreditationDate="2011-07-07"
 startDate="2012-01-01"
 >
 <accreditedBy
 flexCodeDefinitionCode="HEALTH_ACCREDITOR"
 >
 Home Health Accreditation Commission
 </accreditedBy>
 </record>
 </accreditations>
</individualProvider>

In order to replace the accreditations with accreditation names Physical Therapy and
Occupational Therapy by an accreditation with accreditation name Speech Therapy and leave all
other values intact, the following individual provider request message is used:

<individualProvider
 code="1234567890"
 flexCodeDefinitionCode="US_PROVIDER"
>
 <accreditations>
 <record
 accreditationName="Speech Therapy"
 status="Accredited"
 accreditationDate="2011-01-01"
 startDate="2011-01-01"

OHI Components - Common Features Guide 57

 endDate="2011-06-06"
 >
 <accreditedBy
 flexCodeDefinitionCode="US_PROVIDER"
 >
 1000000000
 </accreditedBy>
 </record>
 </accreditations>
</individualProvider>

To clear the values of the dynamic record that was created in the examples above, the following
individual provider request message is used:

<individualProvider
 code="1234567890"
 flexCodeDefinitionCode="US_PROVIDER"
>
 <accreditations/>
</individualProvider>

4.2.3.2.3 Multi-Value Non-Time-Valid Records

Message Definition

A multi-value non-time-valid dynamic record is represented as a sub-element of the element
it belongs to, with the name of the sub-element being the same as the corresponding dynamic
field usage name. The sub-element can have one or more <record> sub-elements of its own
(representing the rows of the dynamic record). The <record> sub-elements have the dynamic
record flex code field usages (representing the columns of the dynamic record) that are
configured as free fields, as attributes with the names of the attributes being the same as the
corresponding flex code field usage names. The same applies to the dynamic record flex code
field usages that are configured as flex code definitions.
Dynamic record flex code field usages that are configured as flex code sets are represented a
sub-elements of the <record> elements, with the names of the sub-elements being the same
as the corresponding dynamic record flex code field usage names. The sub-elements have
flexCodeDefinitionCode as attribute and the dynamic field value as text content.

Update Behavior

When the application updates a record, a single-value time-valid record is handled as follows:
if the sub-element is not included in the request, then the existing value(s) in the application
remain(s) untouched; if the sub-element is included in the request, then the existing value(s) is/
are replaced by the value(s) specified in the request (attributes that are not in the request are set
to null). In order to send in an update that clears the existing value(s), the update request should
include the sub-element without any <record> sub-elements.

Examples

Consider the example below of an individual provider request message for the creation of a new
individual provider, where the following dynamic field usages are configured on the providers
table:

• accreditations: single-value time-valid dynamic record, having the following dynamic record
flex code field usages:

• accreditationName (configured as a flex code definition)

• status (configured as a flex code definition)

• accreditedBy (configured as a flex code definition)

• accreditationDate (configured as a free field)

<individualProvider
 code="1234567890"
 flexCodeDefinitionCode="US_PROVIDER"
 name="Smith"

OHI Components - Common Features Guide 58

 nameFormatCode="NFDFLT"
 outputLanguageCode="EN"
 startDate="2010-01-01"
>
 <accreditations>
 <record
 accreditation="Physical Therapy"
 status="Accredited"
 accreditedBy="Home Health Accreditation Commission"
 accreditationDate="2011-01-01"
 />
 <record
 accreditation="Occupational Therapy"
 status="Accredited"
 accreditedBy="Home Health Accreditation Commission"
 accreditationDate="2011-07-07"
 />
 </accreditations>
</individualProvider>

In order to replace the accreditations with accreditation names Physical Therapy and
Occupational Therapy by an accreditation with accreditation name Speech Therapy and leave all
other values intact, the following individual provider request message is used:

<individualProvider
 code="1234567890"
 flexCodeDefinitionCode="US_PROVIDER"
 name="Smith"
 nameFormatCode="NFDFLT"
 outputLanguageCode="EN"
 startDate="2010-01-01"
>
 <accreditations>
 <record
 accreditation="Speech Therapy"
 status="Accredited"
 accreditedBy="Home Health Accreditation Commission"
 accreditationDate="2011-01-01"
 />
 </accreditations>
</individualProvider>

To clear the values of the dynamic record that was created in the examples above, the following
individual provider request message is used:

<individualProvider
 code="1234567890"
 flexCodeDefinitionCode="US_PROVIDER"
>
 <accreditations/>
</individualProvider>

4.2.3.2.4 Multi-Value Time-Valid Records

Multi-value time-valid records are handled in the same manner as single-value time-valid
records.

4.2.4 Errors

Error messages related to attribute handling, that are common across integration points, are
specified in Response Messages (page 59).

OHI Components - Common Features Guide 59

4.3 Response Messages

4.3.1 Indicating Success

OHI HTTP API services make use of HTTP status codes in the HTTP headers to indicate a
success. The following table lists these status codes:

Code Meaning Description

200 OK Request succeeded for GET calls.
May also be used for DELETE
calls that complete synchronously

201 Created Request succeeded for creation of
a resource

202 Accepted Request accepted for
asynchronous POST or DELETE
calls

204 No Content Request succeeded for updating or
deleting a resource

In the case of successfully creating a resource next to a 201 status code, the server returns
the Location URI. In the HTTP specification, it is optional whether the server sends the
representation of the newly created resource. In many cases, it will send a full response body as it
may contain further processing instructions for the client in the form of hypermedia links.

In the case of successfully updating a resource, according to the HTTP specification the server
has to respond in one of the following ways:

1. Header "HTTP 200 OK", accompanied by a full response body or

2. Header "HTTP 204 No Content", without any response body.

By default, OHI systems will send "HTTP 200 OK" and a full response body. After updating a
resource the server does not return a Location URI.

In the case of successfully deleting a resource, according to the HTTP specification the server has
to respond in one of the following ways:

1. Header "HTTP 200 OK" if the response includes an entity describing the status; OHI systems
use this option if a sub-entity was deleted to return the modified (master) entity.

2. Header "HTTP 202 Accepted" if the action has not yet been enacted; OHI systems use this
option if the entity is deleted at a later stage.

3. Header "HTTP 204 No Content" if the action has been enacted but the response does not
include an entity; OHI systems use this option if the entity was deleted successfully

Requests that GET one or more resources will have a response structure specific to the
integration point.

4.3.2 Links

When responding to requests, OHI Components applications may add URI links to the response
message payload. Links have the following attributes:

• rel: description for the type of link

• type: the media type for the link, e.g. 'application/xml'

• href: the actual hypermedia reference that the client may activate

OHI Components applications return relative URI links that start with the path of the RESTful
service that generated the response. It is expected that the client prepends these with the protocol

OHI Components - Common Features Guide 60

identifier (e.g. HTTPS), domain, port and the OHI Components application HTTP API context
root (i.e. "/api").

The following link types are distinguished:

Link type Description

self Reference to a specific resource, e.g. /api/activities/
{activityId}.

file Reference to a file that will be streamed to the client
when the link is activated.

messages List of messages resulting from processing a request
or activity.

first For pagination of results: for navigation to first
'page'. Only applicable if the current 'page' is not the
first.

next For pagination of results: for navigation to next
'page'. Only applicable if the list contains additional
items.

prev For pagination of results: for navigation to previous
'page'. Only applicable if the current 'page' is not the
first.

actions/... Denotes actions that are executed when the link is
activated. For example: 'actions/startprocessing' to
start an activity.

4.3.3 Pagination

An HTTP API service response to GET resource request may support pagination to handle large
data volumes if specified as a requirement for the integration point. Additional information must
be supplied along with the Integration point's URI regarding the "offset" and "limit". By default,
the Offset is set to 0 and Limit is set at 50. i.e if only the URI is specified, first 50 resources will
be returned in the response along with the links "next" and "prev" as applicable.

Offset: Specifies the nth record from which the subset is desired
Limit: Specifies the number of elements to be returned

Example URI to fetch next 50 records.

<Integration Point URI>?offset=51&&limit=50

4.3.4 Indicating Failure

An HTTP API service response message to an unsuccessfully processed request message will
have the following structure along with appropriate HTTP status codes unless it is explicitly
required to have more information to be part of the response of the integration point:

<resultMessages result='F'>
 <resultMessage code= ''>
 messageText
 </resultMessage>
</resultMessages>

The following table lists the HTTP status codes for indicating failure:

Code Meaning Description

400 Bad Request The request could not be
understood by the server due to
malformed syntax (e.g. when
unmarshalling of the request
failed)

OHI Components - Common Features Guide 61

401 Unauthorized Request failed because the user is
not authenticated

404 Not found The server has not found anything
matching the Request URI

415 Unsupported Media Type The server is refusing to service
the request because the entity
of the request is in a format
not supported by the requested
resource for the requested method

422 Unprocessable Entity The syntax of the request is
correct (thus a 400 (Bad Request)
status code is inappropriate) but
the server was unable to process
the contained instructions because
the data violates business rules

500 Internal Server Error Something went wrong on the
server, check server status and
logs and/or report the issue

4.3.5 Failure Result Messages

Result messages are common or specific. Inside the element <resultMessages> (described above)
there may be zero, one or more result messages.The purpose of these messages is to clarify why
a request message was not processed successfully. The message text contains the message text in
which the substitution parameters have been set.

For example, the Activity Integration Point's synchronous response message which failed to start
the activity process as activity code was unknown would be:

<resultMessages result='F'>
 <resultMessage code='ACT-IP-ACTY-001'>
 ACT-IP-ACTY-001: Activity code abc is unknown
 </resultMessage>
</resultMessages>

• Integration Point Specific messages can only occur in the response of a specific Integration
Point. Such messages are described in the description of the concerned Integration Point.

• Messages common across Integration Points can occur in the responses of many
Integration Points. These messages relate to common functionality, like the use of dynamic
fields. These messages are described below.

Messages common across Integration Points:

Code Severity Message

GEN-ACRE-001 Fatal Access restriction code {code}
is unknown. Request cannot be
processed

GEN-TRAS-001 Fatal A reference may only be provided
in combination with a transaction
source

GEN-TRAS-002 Fatal Transaction source code {code} is
unknown

GEN-CURR-001 Fatal Currency code {code} is unknown

GEN-DYNA-001 Fatal The dynamic field:
{dynamicFieldUsageName}
should have unique values. There
is already a record with value:
{value}

OHI Components - Common Features Guide 62

GEN-DYNA-002 Fatal {dynamicFieldUsageName}:
There is already a value present in
this period of time ({startDate} -
{endDate})

GEN-DYNA-003 Fatal Cannot insert same value for the
flex code in case the dynamic
field is multivalue

GEN-DYNA-006 Fatal Dynamic field flex code definition
code {code} is unknown. Request
cannot be processed

GEN-DYNA-007 Fatal The flex code {code} is
unknown to dynamic field
{dynamicFieldUsageName}.
Request cannot be processed

GEN-DYNA-009 Fatal {endDate} should be later than
or the same as {startDate} for
{dynamicFieldUsageName}

GEN-DYNA-010 Fatal {dynamicFieldUsageName}
should have a value and a
{startDate}

GEN-DYNA-011 Fatal {dynamicFieldUsageName} value
{value} does not belong to flex
code definition {code}

GEN-DYNA-012 Fatal {dynamicFieldUsageName}: the
same value {value} is present
in another period ({startDate} -
{endDate})

GEN-DYNA-015 Fatal The field
{dynamicFieldUsageName} is not
allowed to be empty

GEN-DYNA-018 Fatal Usage
{dynamicFieldUsageName}
can only have a record when the
condition defined evaluates to true

GEN-DYNA-019 Fatal Usage
{dynamicFieldUsageName}
should have at least one record

GEN-DYNA-020 Fatal Key field
{flexCodeFieldUsageCode}
should have unique value
for Dynamic record
{dynamicFieldUsageName}

COD-FCFU-101 Fatal Dynamic Records should
specify the value for key
field. Dynamic Record
{dynamicFieldUsageName}
does not specify value for key
{flexCodeFieldUsageCode}

GEN-PROC-017 Fatal Value {value} is not part of
domain {domain}

Besides these messages, business rule messages may also occur in the responses of Integration
Points. Business rule messages are raised in the validation layer of the OHI application and are
common to both the User Interface Pages and the Integration Points. For example, business rule
GEN-TMVL-001: "The start date should lie before the end date for {dynamicFieldUsageName}".

Lastly, technical error messages may be returned through the responses of Integration Points.
For example, database message GEN-ORA-01400: "NAME" column is mandatory for table
"REL_PROVIDERS".

OHI Components - Common Features Guide 63

4.4 Data File Set Integration Point

OHI Claims application supports file based data import. Uploading the files and processing the
file contents is a two step process:

1. Load the files using the Data File Set Integration Point.

2. Process the file contents by initiating the proper activity type using the Activity Integration
Point or through the UI.

The data file set integration point allows uploading of the files in the following ways:

• Through multiple request -response based conversation mode.

• Through a single request by creating the data file set and loading multiple data files.

4.4.1 Creating a data file set with one or more files in conversation mode (multiple requests).

In this scenario the client performs the following steps:

• Create data file set, optionally with one or more files.

• Add data file to the data file set, if not already created with the data file set.

• Add file content.

4.4.1.1 Step 1: Create Data File Set

This request enables an external system to create a data file set.

4.4.1.1.1 Request Message

The create data file set request will have the following structure:

<dataFileSet code='' description=''>
</dataFileSet>

4.4.1.1.2 Response Message

The create data file set success response will have the following structure:

<dataFileSet code=''>
 <links>
 <link rel='self' type='application/xml' href='/datafilesets/
{datafilesetcode}'/>
 </links>
</dataFileSet>

The URI received in the response could be used to perform further actions on the data file set.

4.4.1.1.3 Step 2: Create data files in a Data File Set.

A data file can be created within a previously created data file set by posting a request
to the URI received in the response of "Create Data File Set request" (uri='/datafilesets/
{datafilesetcode}).

4.4.1.1.4 Request Message

The create file within a data file set request will have the following structure:

<dataFile

OHI Components - Common Features Guide 64

 code=''
 description=''
 filePath='' -- File path can be supplied for reference purposes. The
 file content is uploaded through a POST operation
/>

4.4.1.1.5 Response Message

The create file within a data file set success response will have the following structure:

<dataFileSet code=''>
 <links>
 <link rel='self' type='application/xml' href='/datafilesets/
{datafilesetcode}'/>
 </links>
 <dataFiles>
 <dataFile code=''>
 <links>
 <link rel='file' type='text/xml' href='/datafilesets/
{datafilesetcode}/datafiles/{datafilecode}/data'/>
 </links>
 </dataFile>
 </dataFiles>
</dataFileSet>

If the code for the data file set or data file is omitted a system generated number will be used
instead.

4.4.1.2 Optional: Create data file set with a data file

Data file can be created directly in Step1. This will create a data file set with one data file or
multiple data files. In this case the request - response xml for Step1 will be as mentioned below.

4.4.1.2.1 Request Message

The create data file set with a data file request will have the following structure:

<dataFileSet code='' description=''>
 <dataFiles>
 <dataFile code='' description='' filePath=''/>
 ...
 </dataFiles>
</dataFileSet>

4.4.1.2.2 Response Message

The create data file set with file success response will have the following structure:

<dataFileSet code=''>
 <links>
 <link rel='self' type='application/xml' href='/datafilesets/
{datafilesetcode}'/>
 </links>
 <dataFiles>
 <dataFile code=''>
 <links>
 <link rel='file' type='text/xml' href='/datafilesets/
{datafilesetcode}/datafiles/{datafilecode}/data'/>
 </links>
 </dataFile>
 ...
 </dataFiles>
</dataFileSet>

OHI Components - Common Features Guide 65

4.4.1.3 Step 3: Add data to Data File

The payload can then be submitted to the URI which was received as the response of Step 2. i.e
 '/datafilesets/{datafilesetcode}/datafiles/{datafilecode}/data'. The file structure is described in
the specification of the file import based integration points.

4.4.1.3.1 Response Message

The add content to data file request's success response will have appropriate HTTP status code in
the header and the following structure:

<dataFileSet code=''>
 <links>
 <link rel='self' type='application/xml' href='/datafilesets/
{datafilesetcode}'/>
 </links>
 <dataFiles>
 <dataFile code=''>
 <links>
 <link rel='file' href='/datafilesets/{datafilesetcode}/datafiles/
{datafilecode}/data'/>
 </links>
 </dataFile>
 </dataFiles>
</dataFileSet>

For all of the above mentioned steps , in case of failure the response will be as specified in the
standard structure under "Indicating Failure" in Response Messages1.

Example : A result message for file content that could not be added as the data file code was
unknown will have the following structure.

<resultMessages result='F'>
 <resultMessage code='DAT-IP-DAFI-005'>
 DAT-IP-DAFI-005:Data file code abc is unknown to data file set pqr.
 </resultMessage>
</resultMessages>

4.4.2 Creating a data file set with multiple files in a single request

As an alternative to creating the data file set in the 'conversational' mode, the data file sets
endpoint offers the client the ability to create a data file set with one or more data files, together
with the file contents, in one request.
This feature requires the client to POST a so called multipart request message that contains the
following parameters:

• The "dataFileSetCode" that contains the unique code for the data file set that will be created.

• One or more "file" parameters that contain the file contents along with file metadata.

Multipart requests can be constructed with various technologies. The following is an example in
HTML:

In an HTML based UI the following sample form could be used to create a data file set with code
as "myfileSet" and upload two files with code "fileCode1" and "fileCode2" in one request:

<html>
 <form name="formtest" action="/filesets/multipart" method="POST"
 enctype="multipart/form-data">
 <input type="text" name="dataFileSetCode" value="myfileSet" />
 <input type="file" name="fileCode1" value="" />
 <input type="file" name="fileCode2" value="" />
 <input type="submit" value="Submit" />
 </form>
</html>

http://slcibah.us.oracle.com:8888/OHI-Main/13887-DSY

OHI Components - Common Features Guide 66

The system's response to this request will have the following structure:

<dataFileSet code='myfileSet'>
 <links>
 <link rel='self' type='application/xml' href='/datafilesets/
myfileSet'/>
 </links>
 <dataFiles>
 <datafile code='fileCode1'>
 <links>
 <link rel='file' href='/datafilesets/myfileSet/datafiles/
fileCode1/data'/>
 </links>
 </datafile>
 <datafile code='fileCode2'>
 <links>
 <link rel='file' href='/datafilesets/myfileSet/datafiles/
fileCode2/data'/>
 </links>
 </datafile>
 </dataFiles>
</dataFileSet>

In case of failure the response will be as specified in the standard structure under "Indicating
Failure" in Response Messages.2

4.4.3 Other Available Operations

4.4.3.1 Get defined data file sets in the system

This request can be used to fetch the details of all the available data file sets in the system. This is
a URI based request (/datafilesets) and supports pagination3.

4.4.3.2 Get details of a data file set

This request can be used to fetch the details of data file sets in the system. This is a URI based
request. The URI must have the following pattern: /datafilesets/{datafilesetcode}

The response to this request will have the following structure:

<dataFileSet code='' description='' locked='N'>
 <dataFiles>
 <dataFile code ='' description ='' contentLength='' filePath=''>
 <links>
 <link rel='file' href='/datafilesets/{datafilesetcode}/datafiles/
{datafilecode}/data'/>
 </links>
 </datafile>

 </dataFiles>
</dataFileSet>

4.4.3.3 Get details of a data file

This request can be used to download the contents of a data file in the system. This is a
URI based request. The URI must have the following pattern: /datafilesets/{datafilesetcode}/
datafiles/{datafilecode}/data

4.4.3.4 Update details of a data file set

This request can be used to update the details of a data file set in the system. The URI will have
the following pattern: /datafilesets

The Request / Response xml structures are the same as for creating a data file set.

http://slcibah.us.oracle.com:8888/OHI-Main/13887-DSY
http://slcibah.us.oracle.com:8888/OHI-Main/13887-DSY.html

OHI Components - Common Features Guide 67

4.4.3.5 Update details of a data file in a data file set

This request can be used to update the details of a data file in the system. The URI will have the
following pattern: /datafilesets/{datafilesetcode}/datafiles/

The Request / Response xml structures are the same as for creating a file within data file set.

4.4.3.6 Delete a data file set

This request can be used to delete a data file set in the system. This is a URI based request. The
URI will have the following pattern : /datafilesets/{datafilesetcode}/

The response message structure will be as specified in Response Messages.4

4.4.3.7 Delete a data file in a data file set

This request can be used to delete the details of a data file in a data file set in the system. URI
will have pattern: /datafilesets/{datafilesetcode}/datafiles/{datafilecode}

The response message structure will be as specified in Response Messages.5

For details on how attributes in the request messages are handled, refer to the Attribute

Handling6.

4.4.4 Error Messages

The following error messages, that are specific to the data file set integration point may be
returned in the response messages:

Scenario Message code Message Severity

Create a data file set DAT-IP-DAFI-001 Data file set code {0}
already exists

Fatal

Create data file within a
data file set.

DAT-IP-DAFI-002 Data file code {0}
already exist within the
data file set

Fatal

Update/Delete/Get a data
file set or Update/Delete/
Get file within a data file
set.

DAT-IP-DAFI-003 Data file set code {0} is
unknown

Fatal

Update/Delete a data file
set or Update/Delete file
within a data file set.

DAT-IP-DAFI-004 Data file set code {0} is
locked for modification

Fatal

Update/Delete/Get data
file within a data file set.

DAT-IP-DAFI-005 Data file code {0} is
unknown to data file set
{1}

Fatal

4.5 Activity Integration Point

The activity integration point provides the following functions:

• Create an activity with the intention to start it later.

• Create and immediately start an activity.

• Recover an activity.

• Monitor status of an activity.

Creating and Starting an Activity

This request enables an external system to create and start an activity. The URI that is used
determines how the system processes the request. Use URI:

http://slcibah.us.oracle.com:8888/OHI-Main/13887-DSY
http://slcibah.us.oracle.com:8888/OHI-Main/13887-DSY
http://slcibah.us.oracle.com:8888/OHI-Main/13662-DSY
http://slcibah.us.oracle.com:8888/OHI-Main/13662-DSY

OHI Components - Common Features Guide 68

• /activities to create an activity but not execute it yet.

• /activities/start to create an activity and immediately execute it.

• /activities/{activity_id}/start to start an activity that was created earlier.

Request Message

The start activity request will have the following structure:

<activity
 level=""
 code=""
 description=""
 parameterSetCode="">
 <contextFields>
 <contextField
 name=""
 value=""/>
 </contextFields>
 <parameters>
 <parameter
 name=""
 value=""/>
 </parameters>
</activity>

Context Field

Some activity types can only be started in a specified context. This information is provided via
the <contextFields> element. The attribute "name" of element <contextField> must point to the
context and the attribute "value" must contain the logical key for the context.

Example: activity type SUPERSEDE_REVERSE that is defined at level TS (or TransactionSet)
can only be started in context of a financial transaction set. The financial transaction set code
must be provided as value to set-up the execution context.

Response Message

If the activity was successfully created but not started (i.e. URI /activities was used) then the
response will have the following structure:

<activity level="" status="">
 <links>
 <link rel='action/startprocessing' type='application/xml' uri='/
activities/{activityId}/start'/>
 </links>
</activity>

Note that the URI in the link can be used by the client to start the activity. Attempt to start an
activity that is not in a valid state i.e. already completed activity, or an activity that is currently
being processed will have a similar response as that of get activity status.

If the activity was created and executed immediately (i.e. URI /activities/start was used) then the
response will have the following structure:

<activity level="" status="">
 <links>
 <link rel='self' type='application/xml' uri='/activities/
{activityId}'/>
 </links>
</activity>

In case the activity could not be registered in the system, for example because the activity code
is unknown, the response will be as specified under "Indicating Failure" topic in Response
Messages7.

http://slcibah.us.oracle.com:8888/OHI-Main/13887-DSY
http://slcibah.us.oracle.com:8888/OHI-Main/13887-DSY

OHI Components - Common Features Guide 69

Recover an Activity

This request enables an external system to recover a failed activity. This is a URI based request
with the following pattern: /activities/{activityid}/recover.

Only activities that failed in status TE/CT can be recovered. Examples of such a failure could be
the inability of sending out financial messages or errors in dynamic logic or any other technical
error. Attempt to recover an activity that is not in valid state will have a similar response as that
of get activity status.

The recover request will have a similar response as that of a start activity.

Status Monitoring

Step 1: Get activity status

This feature provides the ability to fetch the status of an activity. This is a URI based request with
the following pattern: /activities/{activityid}.

Response Message

<activity
 level=""
 status="">
 <links>
 <link rel='messages' href='/activities/{activityid}/messages'/>
 </links>
</activity>

The <resultMessages> element will only be available when the activity has concluded with
errors. If the activity has concluded with errors and it is desirable to have the details of the errors
then Step 2 must be performed.

Step 2: Get activity result messages

This feature provides the ability to get the result messages of an activity. The URI received from
the step 1 should be used i.e /activities/{activityid}/messages. This supports pagination8.

Response Message

The response will have the following structure:

<activityMessages>
 <resultMessages result="" elementId="">
 <resultMessage
 code =""
 >
 messageText
 </resultMessage>
 </resultMessages>
</activityMessages>

Element and Attribute

• <resultMessage elementId> its an optional parameter. It provides consolidation of the
messages based on its value. The elementId attribute usage for an activity is defined in the
description of the activity type. Example: For the provider import activity the element id can
be provider code in combination with the flex field code for the provider resource.

http://slcibah.us.oracle.com:8888/OHI-Main/13887-DSY.html

OHI Components - Common Features Guide 70

Optional: Activity Notification

The activity integration point provides a call back feature to a pre-configured
endpoint. This feature provides the following response to the configurable
endpoint once the activity triggered by an external system through IP has
concluded. The generic notification endpoint can be configured as property
'ohi.activityprocessing.notification.endpoint' in the OHI Components application's properties
file. The notification endpoint can be overridden for specific activity types, e.g. specify property
'ohi.activityprocessing.notification.endpoint.SELECT_TRANSACTIONS_IN_SET' to have
the system deliver all notifications for activity type SELECT_TRANSACTIONS_IN_SET to a
specific endpoint.

Response Message

The response message once the activity has concluded will have the following structure:

<activity level="" status="">
 <links>
 <link rel='messages' href='/activities/{activityid}/messages'/>
 </links>
</activity>

Note: the response may contain a <dataFileSets> element. Refer to Special parameters for
details.

In case of failure to retrieve the status of activity (Example: activity code is unknown) the
response will be as specified under "Indicating Failure" topic in Response Messages9.

4.5.1 Conversation Parameter

The responseDataFileSetCode parameter influences the standard request-response mechanism for
an activity, it is therefor referred to as a conversation parameter.

As is the case with any activity parameters, conversation parameters can only be used if they are
defined for the activity type. The following is an example of a start activity request that makes
use of the responseDataFileSetCode parameter:

<activity level="" code="">
 <parameters>
 <parameter name="responseDataFileSetCode" value="RESPONSE_DFS"/>
 </parameters>
</activity>

Assuming that the parameters and values are valid, the request in this example creates an activity.
As part of the execution a response data file set with code "RESPONSE_DFS" is created. The
response to the status monitoring requests i.e. get activity status and the call back response
(<resultDataFileset > element will be added to the above response) will have the following
structure:

Response Message

<activity level="" status="">
 <links>
 <link rel='messages' href='/activities/{activityid}/messages'/>
 <link rel='file' href='datafilesets/{datafilesetcode}/datafile/
{datafilecode}/data'/>
 </links>
</activity>

The response file can be downloaded by using "Get details of a data file" request from data file
integration point : URI : datafilesets/{datafilesetcode}/datafile/{datafilecode}/data should be use
to initiate a request to download the response file.

The response file will have the following structure:

http://slcibah.us.oracle.com:8888/OHI-Main/13887-DSY

OHI Components - Common Features Guide 71

<{rootElelement}>
 <resultMessages result="" elementId="">
 <resultMessage
 code =""
 >
 Text Message
 </resultMessage>
 </resultMessages>
</{rootElelement}>

The {rootElelement} for the response file is described in the activity type.

4.5.1.1 Error Messages

The following error messages, that are specific to the activity integration point may be returned in
the response messages:

Message code Scenario Message Severity

ACT-IP-ACTY-001 Create or Create & Start
activity

Activity code {0} is
unknown

Fatal

ACT-IP-ACTY-002 Create or Create & Start
activity

Activity type level {0} is
unknown

Fatal

ACT-IP-ACTY-003 Create or Create & Start
activity

Parameter set code {0} is
unknown

Fatal

ACT-IP-ACTY-004 Status monitoring and
get result messages

Activity Id {0} is
unknown

Fatal

ACT-IP-ACTY-005 Create or Create & Start
activity

Use either a parameter
set or parameters but not
both

Fatal

4.5.1.2 Examples

4.5.1.2.1 Create or Start Activity request - SELECT_TRANSACTIONS_IN_SET

<activity
 level="GL"
 code="SELECT_TRANSACTIONS_IN_SET"
 description="Select processed transaction in a new set">
 <parameters>
 <parameter name="financialTransactionSetCode"
 value="FINANCIALTRANSACTIONSRUN_20141107"/>
 <parameter name="financialTransactionSetDescr" value="Financial
 transactions set for Nov-07, 2014"/>
 <parameter name="transactionCreatedDateFrom" value="2010-01-01"/>

 <parameter name="transactionCreatedTimeFrom" value="0800"/>
 <parameter name="transactionCreatedDateTo" value="2014-11-06"/>
 <parameter name="transactionCreatedTimeTo" value=""/>
 <parameter name="paymentDueDateFrom" value="2010-01-01"/>
 <parameter name="paymentDueDateTo" value="2014-11-14"/>
 <parameter name="includeUnfinalized" value="Y"/>

 </parameters>
</activity>

4.5.1.2.2 Create or Start Activity request - SUPERSEDE

<activity
 level="TS"
 code="SUPERSEDE"
 description="Supersede applicable transaction in the set
 FINANCIALTRANSACTIONSRUN_20141107">

OHI Components - Common Features Guide 72

 <contextFields>
 <contextField
 name="transactionSet"
 value="FINANCIALTRANSACTIONSRUN_20141107"/>
 <contextFields>
</activity>

4.5.1.2.3 Create or Start Activity request - PROVIDER_IMPORT

<activity
 level="GL"
 code="PROVIDER_IMPORT"
 description="Processed data file set 001V11">
 <parameters>
 <parameter name="dataFileSetCode" value="001V11"/>
 <parameter name="responseDataFileSetCode" value="response001V11"/
>
 </parameters>
</activity>

4.6 File Based Import

OHI Components applications support file based data import for the following entities:

• Import Providers and Provider Groups

• Import Relations

Uploading files and processing the file contents is a two step process:

1. Upload the file using Data file set integration Point10

2. Process the file contents by initiating the proper activity type using the Activities Integration

Point11.

• Provider Import activity type to process the file based request for the provider
integration point.

• Relation Import activity type to process the file based request for relation integration
point.

Parameters

The parameters for the file import based activity are as follows:

• Data File Set Code
This parameter indicates the data file set that needs to be processed.

The activity can be created only when the Indicator Locked on the data file set code is 'N' otherwise an error ACT-VL-
FIAT-001 is raised.

Once the activity picks up a data file set for processing (i.e. starts an created activity), it places a lock on it by updating the indicator
Locked to 'Y'. If the indicator Locked is already found to be 'Y' then an error ACT-VL-FIAT-001 is raised. Activity must unlock the
data file set in case if the processing completes with the error(s).

• Response Data File Set Code
The data file set code that should be used for the data file set of the response file. If not
provided the system generates a UUID based value as data file set code.

http://slcibah.us.oracle.com:8888/OHI-Main/13891-DSY
http://slcibah.us.oracle.com:8888/OHI-Main/13894-DSY
http://slcibah.us.oracle.com:8888/OHI-Main/13894-DSY

OHI Components - Common Features Guide 73

Data File Validation

The first step in every data file import activity is to check whether the datafile that is provided
through the parameters is valid for the specific data import. The following checks are executed:

1. Does the datafile exist (i.e. is there a datafile in the datafile set)?

2. Is the datafile empty?

3. Is the datafile of the correct type for the import activity (i.e. does it have the correct root
element)?

Error Message

The file import based activity can result in the following messages:

Code Sev Message

ACT-VL-FIAT-001 Fatal Data file set {code} is locked
and cannot be picked up for
processing.

ACT-VL-DAFI-001 Fatal No data file exists in datafile set
{code}.

ACT-VL-DAFI-002 Fatal Data file {code} is empty.

ACT-VL-DAFI-003 Fatal Data file {code} is of incorrect
type for this integration point.

4.6.1 Example : Provider Import

4.6.1.1 Step 1: Create data file set with a data file

4.6.1.1.1 Request Message

The create data file set with a data file request will have the following structure:

<dataFileSet code='ProviderImport_20141210_01' description ="Provider
 Import">
 <dataFile
 code='IndividualProviderFile1'
 descr='Individual Provider File 1'
 filepath='system1/tmp/Providers/1_1212121_v2.xml' -- This can be the
 reference path of the external system. This is for information only.
 />
</dataFileSet>

4.6.1.1.2 Response Message

<dataFileSet code='ProviderImport_20141210_01'>
 <links>
 <link rel='self' type='application/vnd.ohi-xml' uri='/datafilesets/
ProviderImport_20141210_01'/>
 </links>
 <dataFiles>
 <dataFile code='IndividualProviderFile1'>
 <links>
 <link rel='content' type='text/xml' uri='/datafilesets/
ProviderImport_20141210_01/datafiles/IndividualProviderFile1/data'/>
 </links>
 </dataFile>
 </dataFiles>
</dataFileSet>

OHI Components - Common Features Guide 74

4.6.1.2 Step 2: Upload Content

Use the URI /datafilesets/ProviderImport_20141210_01/datafiles/IndividualProviderFile1/data
 and upload the file having the structure as specified in Provider Integration point.

4.6.1.2.1 Response Message

The add content to data file request's success response will have an appropriate HTTP status code
in the header and the following structure:

<dataFileSet code='ProviderImport_20141210_01'>
 <links>
 <link rel='self' type='application/vnd.ohi-xml' uri='/datafilesets/
ProviderImport_20141210_01'/>
 </links>
 <dataFiles>
 <dataFile code='IndividualProviderFile1'>
 <links>
 <link rel='content' uri='/datafilesets/
ProviderImport_20141210_01/datafiles/IndividualProviderFile1/data'/>
 </links>
 </dataFile>
 </dataFiles>
</dataFileSet>

4.6.1.3 Step 3: Initiate the Provider Import Activity using Create Activity (/activities)

<activity level="GL" code="PROVIDER_IMPORT" description="Processed data
 file set 001.11">
 <parameters>
 <parameter name="dataFileSetCode"
 value="ProviderImport_20141210_01"/>
 <parameter name="responseDataFileSetCode"
 value="responseProviderImport_20141210_01"/>
 </parameters>
</activity>

4.6.1.3.1 Response Message

The start activity response will have an appropriate HTTP status code in the header and the
following structure:

<activity code='PROVIDER_IMPORT' status ="IN">
 <links>
 <link rel='action/startprocessing' type='application/vnd.ohi-xml'
 uri='/activities/12345/start'/>
 </links>
</activity>

4.6.1.4 Step 4: Start Provider Import Activity

Use the URI /activities/12345/start to start the activity.

4.6.1.4.1 Response Message

The start activity response will have an appropriate HTTP status code and location in the header
and will have the following structure:

<activity
 code="PROVIDER_IMPORT"
 status="IP">
</activity>

OHI Components - Common Features Guide 75

4.6.1.4.2 Step 5: Get Status

Use the URI /activities/12345 to get the status of the activity

4.6.1.4.3 Response Message

When the activity has not concluded the response structure will be

<activity code="PROVIDER_IMPORT" status="IP" />

When the activity has concluded with business errors the response structure will be

<activity code="PROVIDER_IMPORT" status="CB">
 <links>
 <link rel='messages' uri='/activities/12345/messages'/>
 <link rel='datafilesets' uri='datafilesets/
responseProviderImport_20141210_01/datafiles/67890/data'/>
 </links>
</activity>

4.6.1.5 Step 6: Get result messages

You can get more information about the result message by sending a request to URI /
activities/12345/messages

4.6.1.5.1 Response Message

<activityMessages>
 <resultMessages result="F" elementId="1234 A">
 <resultMessage code ="REL-IP-PROV-031">
 REL-IP-PROV-031: Country code AA is unknown
 </resultMessage>
 </resultMessages>
 <resultMessages result="F" elementId="1235 B">
 <resultMessage code ="REL-IP-PROV-031">
 REL-IP-PROV-031: Country code AA is unknown
 </resultMessage>
 </resultMessages>
</activityMessages>

4.6.1.6 Step 7: Get response file

You can download the response file by using "Get details of a data file" request from data file
integration point with URI - datafilesets/responseProviderImport_20141210_01/datafiles/67890/
data

4.6.1.6.1 File Details

<individualProvidersResponse>
 <resultMessages result="F" elementId="1234 A">
 <resultMessage code ="REL-IP-PROV-031">
 REL-IP-PROV-031: Country code AA is unknown
 </resultMessage>
 </resultMessages>
 <resultMessages result="F" elementId="1235 A">
 <resultMessage code ="REL-IP-PROV-031">
 REL-IP-PROV-031: Country code AA is unknown
 </resultMessage>
 </resultMessages>
</individualProvidersResponse>

OHI Components - Common Features Guide 76

4.7 Seed Data

4.7.1 Activity Types

Code Description Type Level Top Level? UI? Dynamic
Record
Definition

Common /
Claims

PROVIDER_IMPORTImports the
providers
contained in
the data files
of the data
file set.

GL Y Y FILE_IMPORTCommon

RELATION_IMPORTImports the
relations
contained in
the data files
of the data
file set.

GL Y Y FILE_IMPORTCommon

4.7.2 Flex Code Field Usages

4.7.2.1 Dynamic Record Definition FILE_IMPORT

Name Field Code Pick List Code Def Mandatory? Sequence Display
name

dataFileSetCodeC100 Y 1 Data File Set
Code

responseDataFileSetCodeC100 N 2 Response
Data File Set
Code

1. http://slcibah.us.oracle.com:8888/OHI-Main/13887-DSY

2. http://slcibah.us.oracle.com:8888/OHI-Main/13887-DSY

3. http://slcibah.us.oracle.com:8888/OHI-Main/13887-DSY.html

4. http://slcibah.us.oracle.com:8888/OHI-Main/13887-DSY

5. http://slcibah.us.oracle.com:8888/OHI-Main/13887-DSY

6. http://slcibah.us.oracle.com:8888/OHI-Main/13662-DSY

7. http://slcibah.us.oracle.com:8888/OHI-Main/13887-DSY

8. http://slcibah.us.oracle.com:8888/OHI-Main/13887-DSY.html

9. http://slcibah.us.oracle.com:8888/OHI-Main/13887-DSY

10. http://slcibah.us.oracle.com:8888/OHI-Main/13891-DSY

11. http://slcibah.us.oracle.com:8888/OHI-Main/13894-DSY

OHI Components - Common Features Guide 77

5 Integrating multiple OHI Applications

5.1 Data Replication

Introduction

The focus of this part of the document is synchronization or replication of data between various
OHI Components applications.

An example of this is the replication of person data in OHI Enterprise Policy Administration
(OHI Policies) to OHI Claims. Both applications make use of the same component or sub system
for maintaining that data. Customers could use the Persons HTTP API message based service or
the Data File Set interface for maintaining person data in both OHI Policies and OHI Claims.

To prevent customers from being burdened with having to synchronize person data across
multiple OHI applications, Oracle provides capabilities for replicating these changes to other
(OHI) applications in an automated fashion. In this scenario, OHI Policies acts as the system
of record or source system for the person data. Whenever a person or a detail of a person, like
an address, is changed in OHI Policies (the source system) it creates a replication event for that
member. Target systems, like OHI Claims in this example, subscribe to receive these replication
events and use these as a trigger to automatically retrieve the changes.

Entities for which Data Replication between OHI Components applications is supported

The following table provides an overview of the entities for which Data Replication can be
enabled and the versions of the OHI Components applications in which this feature was first
provided.

Entity Source System Target System

Persons OHI Policies 2.16.1.0.0 OHI Authorizations 2.16.1.0.0

Persons OHI Policies 2.16.1.0.0 OHI Claims 2.16.1.0.0

Authorizations OHI Authorizations 2.16.1.0.0 OHI Claims 2.16.1.0.0

Oracle identifies the systems that qualify as source and target systems and which versions of
these systems are certified to exchange data using the data replication mechanism.

In the following paragraphs the concepts of this data replication mechanism are explained as well
as the way to configure eligible OHI Components applications to act as either source or target
systems.

Data Replication Overview and Concepts

This paragraph provides a high-level overview of the data replication mechanism, which can be
broken down into the following major areas:

• Change detection: the source system is responsible for detecting changes to entities that need
be replicated to target systems. These replication events include insert, update and delete
operations.

• Event logging: the source system maintains a log of the replication events that need to be
replicated.

• Event retrieval / publishing: events are returned by the source system per request of target
systems. For that purpose, the source system exposes an HTTP API resource that target
systems can use to retrieve replication events.

• Event processing: the target system processes the events to update its local representation of
the entities.

OHI Components - Common Features Guide 78

The following pictures provide a high-level overview of the solution, identifying processing in
source and target systems:

Change Detection and Change Logging in Source Systems

Changes are tracked at the ‘root aggregate’ entity level, i.e. for a person and not for a person's
address. Changes to details propagate up to the root aggregate. Changes are tracked for each
database transaction in the system and for each transaction new replication events are created;
replication events that were created in previous transactions are never updated.

The following table lists examples of changes and the resulting data replication events:

Change in the source system in one transaction Data Replication event(s) created by the system

A new person is added with an address One Insert event for the person

The last name of an existing person is changed One Update event for the person

The last name for the same person is changed again One Update event for the person

For three persons the last names are changed Three Update events, one for each person

A new address is added for an existing person One Update event for the person

The name of an existing person is changed and a
new address is added for the same person

One Update event for the person

An address is removed from the person's list of
addresses

One Update event for the person

A person and all its associated data (like addresses
and, marital statuses) is removed

One Delete event for the person

Three persons and their associated data are removed Three Delete events, one for each person

Configuration options in the Source System

Change detection and logging in a source system is automatically activated when the system is
started. It is driven by seeded configuration that is provided by Oracle. Source systems expose an
HTTP API resource 'api/replicationevents' that target systems use to retrieve replication events
(i.e. the source system does not publish or push replication events). The same resource supports
the following operations:

Operation Description

GET api/replicationevents/entities Returns an overview of the entities and their
configuration details for which the system is able to
track changes.

GET api/replicationevents/entities/{entity} Returns configuration details for a specific business
entity.

OHI Components - Common Features Guide 79

PUT api/replicationevents/{entity} To change the configuration for the given entity. It
can be used to enable or disable replication event
logging for the given entity. Any other elements
cannot be changed, attempts to change these will
simply be ignored.

For example, to disable change detection and logging for the "persons" entity execute the
following:

curl -H 'Content-Type: application/xml' -H 'Accept: application/xml' -X
 PUT -d
'<sourceReplicationEventLogConfiguration enabled="N" />'
http://localhost:8001/api/replicationevents/persons

To re-enable change detection and logging for the "persons" entity execute the following:

curl -H 'Content-Type: application/xml' -H 'Accept: application/xml' -X
 PUT -d
'<sourceReplicationEventLogConfiguration enabled="Y" />'
http://localhost:8001/api/replicationevents/persons

Remarks:

• Oracle assumes that this configuration is very static. It may take up to 15 minutes before the
system picks up a change to this configuration.

• Once change detection and logging for an entity is disabled the HTTP API resource must be
used to enable it again, e.g. if it is disabled restarting the system will not re-enable change
detection and logging.

Retrieving Replication Events that were logged by a Source System

A GET operation on the 'api/replicationevents/{entity}/events' resource provides access to
the Replication Events that a source system logged for a given entity. It accepts the following
parameters:

Parameter Description

Timestamp (default: null) Identification of the last replication event entry
that was already received by the target system.
The source system will return replication event
entries with a timestamp that is larger than the given
timestamp.

Limit (default: null) For pagination of replication events.

Timestamp Threshold (default: null) The same timestamp could occur multiple times
(i.e. multiple events were logged at the same time).
It might be the case that the target system did not
receive all events logged for that timestamp. The
Timestamp Threshold informs the source system
exactly how many replication events that were
logged for the business entity at the given timestamp
were already received by the target system. If more
replication events were logged for the business
entity at the given timestamp the source system will
return all these replication events again.

Remarks:

• The source system paginates responses. If the page size limit is not specified in the request it
will return a maximum of 1000 replication events (configurable by setting system property
'ohi.ws.replicationevents.pagination.limit'). If the number of events that were logged for
the business entity for a specific timestamp exceeds the pagination limit, the latter will be
ignored. If additional results are available, the response contains a link that the client can use
to get the next set.

• The media type / payload format is 'application/xml'.

OHI Components - Common Features Guide 80

• For each business entity, the response contains (absolute) URIs that point to the source
system’s resource for retrieving the entity, e.g. 'http://host:port/api/persons/123' for retrieving
the person that can be identified with id '123' in the source system. The target system will use
the URIs to get the updated business entity.

Configuring an OHI Application Target System to retrieve Replication Events from a
Source System

An OHI Components application that can retrieve replication events from a source system
(or from multiple source systems) comes with the basic setup and processing logic for that
purpose. However, by default, retrieving replication events from a source system is not enabled.
Customers that want to enable replication of data to a target system must configure the base URI
for each entity for which data replication is supported in the target system.

The following table lists the system properties for currently supported data replication use cases:

Entity Source System Target System System Property Sample Value

Persons OHI Policies OHI Authorizations ohi.ws.sourcesystem
.persons.baseurl

http://host:port/
policies

Persons OHI Policies OHI Claims ohi.ws.sourcesystem
.persons.baseurl

http://host:port/
policies

Note: the values in the System Property and Sample Value columns is formatted for readability,
these should normally be specified as a single string, without line breaks.

An OHI Components application that is preconfigured to retrieve change events from a source
system checks for each entity if the associated system property is given a valid URI value. If that
is the case, the configuration for retrieving replication events for that specific entity from a source
system is enabled.

If the configuration was enabled for at least one entity, the system starts a Data Replication
Global activity that frequently runs to collect replication events and make sure that these are
processed. The interval for running the Data Replication Global activity is configurable, it can be
influenced by setting system property 'ohi.datareplication.activity.runinterval' (value in seconds,
by default it is 600).

The Data Replication Global activity executes the following workflow for every entity for which
the configuration is enabled:

• If none is running yet, the Data Replication Global activity spawns an instance of the
Replication Event Retriever Global activity for each business entity for which data
replication is enabled. It is the responsibility of this activity to copy replication events from
the source system verbatim, i.e. it does not check for possible duplicates.
The entity for which this activity instance should retrieve changes is passed to it as input
parameter. The Replication Event Retriever Global activity retrieves replication events
from the configured source system, using the GET operation on the source system's 'api/
replicationevents/{entity}/events' resource.
It stores the replication events returned by the source system in a local events table from
which these are processed. As long as the response message indicates that additional
replication events are available the Replication Event Retriever will continue to retrieve and
store these.

• If none is running yet, the Data Replication Global activity spawns an instance of the
Replication Event Processor Global activity. The Replication Event Processor processes
events for a given entity. The processing algorithm is explained in the following paragraph.

Activities and their status can be tracked from the Activities page in OHI Components
applications. Instances of the Replication Event Retriever Global Activity and the Replication
Event Processor Global activity that completed successfully will be removed periodically if the
Data Purge routine (see below) is activated.

OHI Components - Common Features Guide 81

Processing Replication Events in a Target System

The source system created new replication events for any change to a specific entity. The
Replication Event Retriever Global activity retrieved all these replication events from the
configured source system.

An overview of the data attributes in a target system is provided in the following table:

Attribute Data Type Required? Description

Entity varchar2(30) Yes Entity.

Source System varchar2(30) Yes The source system.

Source System Version varchar2(30) Yes Source system version.

Source Subject UUID varchar2(36,0) Yes Unique identifier of the
entity as provided in the
source system at the time
it was created.

Logged Timestamp timestamp Yes Identifies when the
replication event was
logged in the source
system.

Operation varchar2(1) Yes As logged by the source
system. Possible values:
I; U; D (Insert, Update,
Delete respectively).

Retrieved Timestamp timestamp Yes Identifies when the
replication event was
retrieved.

Business Entity URI varchar2(200) No URI for retrieving the up
to date entity from the
source system. Empty in
case of Delete events.

Activity Id number(30,0) No Reference to the activity
that processes the entity.

Processed Timestamp timestamp No Identifies when the
replication event was
processed.

Processed Result varchar2(2) No Superseded (SU) /
Completed (CO) /
Errored (ER)

First, the processor checks if dynamic logic functions are available for all replication events
for an entity that are not processed yet. If that is not the case then it raises an activity message
REP-CTET-001, 'Dynamic Logic function with signature {0} and code {1} not found' and the
activity will end with status Completed with Errors. The use case for dynamic logic functions is
explained below.

If the activity has validated that dynamic logic functions are available it will process the
replication events that were retrieved. The replication events in the target system's database
may contain duplicate entries or events that make no sense to even process. An example of the
latter is a series of update events for a specific entity that are followed by a delete event; in that
case it makes no sense to update the entity in the target system because it is already clear that it
will eventually be deleted. Therefore processing replication events in a target system requires
consolidation ('rolling up the changes') to prevent replication of the same entity multiple times
and to prevent doing unnecessary work.

The algorithm will be explained in terms of the data that OHI Components applications store for
replication events that are retrieved from a source system.

The algorithm is as follows:

• First, 'roll up' changes by marking events for an entity as Superseded and set the Processed
Timestamp using the following rules:

OHI Components - Common Features Guide 82

• Any events for an entity with the same Source Subject UUID prior to a delete operation
for that specific entity are marked as Superseded. Only the delete event for that entity
remains to be processed.

• Any insert or update events except the last one for an entity with the same Source
Subject UUID for which there is no delete event are marked as Superseded. Only the last
insert or update event for that entity remains to be processed.

• Loop over (remaining) non-processed replication events (for which the Processed Timestamp
is null) to process these:

• Insert a new or update an existing local representation by using the Business Entity URI
to retrieve the entity from the source system and calling existing import functions on
existing services with the data that was retrieved.

• In case of a delete operation the entity is queried using the Source Subject UUID.
Processing is as follows:
If the entity could not be resolved using the Source Subject UUID then the processed
result in the Target Replication Events entity will be set to Completed.
If the object could be resolved it will be deleted along with all its details.
If the entity could be resolved but the delete operation fails, for example because there
are references to the business entity in the target system, then a non-fatal message will
be added to the activity and the Processed Result will be set to Completed.

If processing of an event results in an error then:

• The processed result for that specific replication event is set to Errored.

• The status of the activity that processed the entity is set to Completed with Errors so that it
can be recovered after the problem was investigated and fixed.

• More recent events for an entity with the same Business Entity URI will not be processed.

• Processing will continue for events of the same entity but with a different Business Entity
URI. This is similar to importing a file: in that case every element is processed independent
from other elements.

Overcoming Model and Setup Differences between OHI Applications

The data replication mechanism can handle differences between entities in various applications:

• Entity models may have application specific differences and the models may evolve over
time. Moreover, changes to the entity model may not be applied to all OHI Components
applications at the same time. Similarly, customers may uptake new versions of applications
at different times.

• The setup may differ from application to application. For example, the person entity in OHI
Policies is likely to be extended with dynamic fields that are not comparable to the dynamic
fields for a person in OHI Claims. Other examples that may differ for the person entity
include (but are not limited to) the code to identify a Dynamic Logic script for formatting a
person's name and the access restriction code for viewing a person's (contact) details.

Dynamic fields (and values) that are specified for the entity in the source system will be ignored
when importing the entity in the target system. Dynamic field matching is based on the usage
name of the dynamic field. The data type of the dynamic field is not taken into account. The
following table lists how OHI Applications deal with a number of sample set up scenarios:

Dynamic Field set up in Source
System

Dynamic Field set up in Target
System

Result when importing entity

Dynamic field with name 'foo' and
value 'bar'

Dynamic field with name 'foo'
does not exist

Dynamic field is ignored

Dynamic field with name 'foo',
type String and value 'bar'

Dynamic field with name 'foo',
but of type Date

Import fails

OHI Components - Common Features Guide 83

Dynamic field with name 'foo'
does not exist

Mandatory dynamic field with
name 'foo' exists

Import fails unless dynamic logic
is used to populate the field

A dynamic Logic function is used to overcome differences between entities in source and target
applications. For each entity, a Data Replication Transformation Dynamic Logic function must
be configured for the combination of OHI Components applications (versions) that is certified to
exchange data using the data replication mechanism.

The following tables list the Data Replication Transformation Dynamic Logic configuration for
OHI Authorizations:

Entity Source System Target System Dynamic Logic
Code

Dynamic Logic
Signature

Persons OHI Policies
2.16.1.0.0

OHI Authorizations
2.16.1.0.0

POL216100_AUT216100Persons Data
Replication
Transformation

and for OHI Claims:

Entity Source System Target System Dynamic Logic
Code

Dynamic Logic
Signature

Persons OHI Policies
2.16.1.0.0

OHI Claims
2.16.1.0.0

POL216100_CLA216100Persons Data
Replication
Transformation

Authorizations OHI Authorizations
2.16.1.0.0

OHI Claims
2.16.1.0.0

AUT216100_CLA216100Authorizations
Data Replication
Transformation

For changes to the factory models of entities, Oracle provides Data Replication Transformation
Dynamic Logic scripts as sample data. Customers can use these as a starting point and freely
adapt these to fit their entity specific configurations.

Dynamic Logic Signature

Data Replication Transformation Dynamic Logic scripts are Dynamic Logic functions with an
entity-specific signature named "<Entity> Data Replication Transformation" and the following
input parameters:

In / Out Name Type Description

In xmlEntity GPathResult The xml payload
representation of the
entity that was retrieved
from the source system.
The GPathResult is
constructed using an
XmlSlurper. In Groovy,
this is the most efficient
way for "reading" an xml
document.

In entity OHI Domain class The OHI domain class
that was constructed
from the entity that was
retrieved from the source
system.

The following sample Dynamic Logic sets the value of dynamic field 'field' that is defined in the
target system to the value of the dynamic field 'anotherField' that is defined in the source system:

entity.field = xmlEntity.@anotherField

Data Purging

Data purging capabilities are available to periodically clean up

OHI Components - Common Features Guide 84

• Source Replication Events;

• Target Replication Events;

• Activities that were used to import changed entities in the target system and that completed
successfully;

• Activities that were used to import changed entities in the target system, that completed with
errors, but that were not associated with any replication events yet (e.g. because it failed fast
when not all dynamic logic functions were properly configured).

In-line with existing data purging capabilities, the routine for cleaning up replication events is
implemented as a PL/SQL database operation:

rep_data_purge_pkg.purge_data
(p_purge_days_source in integer
,p_purge_days_target in integer
);

The input parameters define the retention period for the data expressed in days. The minimum
retention period is 30 days. A value smaller than 30 for any of the input parameters results in an
error.

The Operations Guide explains how to set up frequent and automated purging of technical data.

F I X M E

Update page 9683-DSY

OHI Components - Common Features Guide 85

6 User Interface Pages

6.1 Desktop Integration

By clicking the Edit in Excel button, it is possible to edit (insert, update or delete) rows in Excel
using the ADF Desktop Integration functionality. This functionality is only available on selected
user interface pages.

6.1.1 Mock-up

6.1.2 OHI Workbook

The Excel sheet holds a separate OHI Workbook tab in the Excel header area. This tab includes
multiple buttons in the following sections:

• Worksheet

• About

6.1.2.1 Worksheet Section

The following buttons are available in this section:

• Refresh

• Save

• Delete Flagged Rows

6.1.2.1.1 Refresh

The refresh button cancels all changes entered in the Excel sheet since the last save action (after
user confirmation) and gets the current (saved) state from the database, based on certain search
criteria (specific for every page).

OHI Components - Common Features Guide 86

6.1.2.1.2 Save

The save button uploads all rows with a checked Changed field (this field is explained in the
Columns chapter). When clicking the save button a dialog is opened with the following options:

Continue Upload

This option is checked by default.

• If checked, the subsequent batches of rows will be committed (inserts and updates) if failures
occur in a batch of rows

• If unchecked, the subsequent batches of rows will not be committed (inserts and updates) if
failures occur in a batch of rows

Download Rows

This option is unchecked by default.

• If checked, all rows that meet the search criteria are downloaded after all rows with a
checked Changed field have been successfully committed (inserts and updates)

• The rows are not downloaded if one or more failures occur

• If unchecked, the rows are not downloaded after all rows with a checked Changed field have
been committed (successfully or unsuccessfully)

6.1.2.1.3 Delete Flagged Rows

The delete flagged rows button deletes all rows with a checked Flagged field (this field is
explained in the Columns chapter).

6.1.2.2 About Section

The following button is available in this section: About.

6.1.2.2.1 About

When invoked, this action launches an About dialog that displays information about the OHI
application (name and version) and the specific workbook (name and function code). It also
displays technical information about the versions of supporting software and the properties.

OHI Components - Common Features Guide 87

6.1.3 Columns

The following types of columns are displayed (in specified order):

• Standard Desktop Integration Columns

• Page Specific Fixed Columns

• Page Specific Dynamic Columns

6.1.3.1 Standard

The following columns are displayed (in specified order):

• Changed

• Flagged

• Status

• Messages

6.1.3.1.1 Changed

This field is used to indicate if a row will be committed (insert or update) when the Save button
in the OHI Workbook tab is clicked (as described in the OHI Workbook chapter).

• The field is automatically checked:

• For newly inserted rows

• For existing rows that are updated (if one or more of the Page Specific fields are
updated)

• The field can also be manually checked or unchecked by the user by double-clicking on the
field

Note that if an existing row with a checked Changed field is committed, an update is performed
on the existing row in the application even if nothing changed on the row.

OHI Components - Common Features Guide 88

6.1.3.1.2 Flagged

This field is used to indicate if a row will be deleted when the Delete Flagged Rows button in the
OHI Workbook tab is clicked (as described in the OHI Workbook chapter).

• The field is unchecked for newly inserted rows

• The field can be manually checked or unchecked by the user by double-clicking on the field

• Note that the standard Excel method of simply deleting rows from the sheet is not supported

6.1.3.1.3 Status and Messages

These fields are used to show the results of commits after the Save or Delete Flagged Rows
button in the OHI Workbook tab is clicked (as described in the OHI Workbook chapter).

After committing, one of the following statuses can be displayed in the field:

• Row inserted successfully

• Row updated successfully

• Insert failed

• Update failed

• Delete failed

Successful Insert

The 'Row inserted successfully' status is displayed when a new row is inserted successfully.

Successful Update

The 'Row updated successfully' status is displayed when an existing row is updated successfully.

Failed Insert

The 'Insert failed' status is displayed when insert of a new row failed, because of errors on that
row. Double-clicking on the 'Messages' field opens a Validation Messages dialog where the error
messages are displayed (see below). Note that if the insert fails because of errors in other rows in
the batch (while on this row there are no errors) the status field is empty.

Failed Update

The 'Update failed' status is displayed when update of an existing row failed, because of errors on
that row. Double-clicking on the 'Messages' field opens a Validation Messages dialog where the
error messages are displayed (see below). Note that If the update fails because of errors in other
rows in the batch (while on this row there are no errors) the status field is empty.

Failed Delete

The 'Delete failed' status is displayed when delete of an existing row failed, because of errors on
that row. Double-clicking on the 'Messages' field opens a Validation Messages dialog where the
error messages are displayed (see below). Note that if the delete fails because of errors in other
rows in the batch (while on this row there are no errors) the status field is empty.

OHI Components - Common Features Guide 89

6.1.3.2 Page Specific

Page specific fixed columns are the fixed fields columns that are specific for every page. Page
specific dynamic columns are the dynamic fields columns that are specific for every page.
Note that all dynamic fields that are configured for the applicable table (even the ones that are
configured to be in the overflow) are displayed as columns.

6.1.4 User Access

When the user clicks on the Edit in Excel button, Excel is opened and a Login dialog is
prompted:

If the user enters valid credentials and the user has an access restriction grant with retrieve rights
for the specific function, the Excel sheet is loaded with all rows that meet the search criteria.

6.1.5 Not Supported

Editing multiple sheets for the same page, at the same time and by the same user is not supported.

6.2 Search Function

This page describes the different types of search that are available in UI pages. It describes the
standard behavior, certain pages may have deviations from these standards.

By entering search criteria, the user can restrict the rows visible in a page to only the rows that
match these criteria. In general, pages in OHI Claims support two search modes: the quick search
and the advanced search.

Both search modes can be used on top level data and child data. Take for example the Countries
page. Top level data consists of Countries. For each country, a list of Country Regions is shown
in the lower section of the screen. Both the Country section and the Country Region section

OHI Components - Common Features Guide 90

have their own quick- and advanced search capabilities. Searching for child data is always in the
context of a current parent. For example: when US is selected as country in the upper part of the
screen, additional search criteria can restrict the Country Regions of country US to those that
match the criteria. It is never possible to search children of multiple parents.

6.2.1 Quick Search

This is the default search mode - no additional action is needed to enable the quick search. It can
filter on only one field. The list of available filters is limited to fields that are visible as columns.

6.2.2 Advanced Search

Characteristics of Advanced Search:

• It is accessed by clicking on the "advanced search" link

• Can search on all items that are available in the page: both items directly visible and items in
an inline overflow.

• Supports entering multiple search criteria at once. Multiple criteria are combined using the
AND operator. Only rows that match all entered criteria are shown.

• Performs only a search on items for which a criteria is entered.

• After performing an advanced search, the page will return to quick search mode.

6.2.3 Search Types

Depending on the item type, a different type of search item is shown in the page. Also the search
operation performed depends on the item type. See table below.

Item Type Search Item Rendered Search Value to be
entered

Search Operation
performed

Numeric Input text Numeric constants item = search value

Date Input date (with
datapicker)

Date constants item = search value

Boolean Drop down with values:
- Empty
- Yes
- No

Select one of the options if Yes or No selected:
item=search value.
no action otherwise.

Domain Based Drop Down with domain
values and empty value

Select one of the options if empty selected: no
action.
otherwise: item = search
value.

Normal alphanumeric
field. See the first note
below

Input text Alphanumeric constants,
including wildcard.

item like search value.

Startdate and Enddate As of Date field Date constants startDate <= search value
<= enddate

Information in this table applies to both quick and advanced search.

Searching on an alphanumeric field is case-insensitive, search value ABC will find
value Abc or abc.

Though like is the search operation for alphanumeric fields, the user has to enter the
wildcard. So search value ABC will not find ABCD. Search value ABC% will.

OHI Components - Common Features Guide 91

6.2.4 From/To Search

OHI Claims has an upper limit for the number of rows that can be shown at once. (Currently this
is 200). A user might want to see the next set of rows.
Example: the Countries page will show countries up to Suriname (SR). The user wants to see the
Countries that alphabetically come after Suriname. To facilitate this, From/To search items are
created for the descriptor item of a page. The descriptor item is the item that uniquely identifies
the row. For countries this is the code. So for code two search items exist: Code From and Code
To. To retrieve the countries from Suriname onwards, the user has to enter SR in Code From and
leave Code To empty. From/To search is only available in Advanced Search.

	1 Data Model
	1.1 Activity and Data File Set Model
	1.1.1 Activity Model
	1.1.2 Data File Set Model

	1.2 Translation
	1.2.1 Concepts
	1.2.1.1 Supported languages
	1.2.1.2 Seed Data

	1.2.2 Use Cases
	1.2.2.1 Installation in English
	1.2.2.2 Installation in English and French
	1.2.2.3 Translation of Seed Data
	1.2.2.4 Translation of messages one by one
	1.2.2.5 Translation boilerplate entries one by one
	1.2.2.6 Bulk translation
	1.2.2.7 Reinstallation
	1.2.2.8 Creation of Business Data
	1.2.2.9 Translation of Business Data

	2 Integration Concepts
	2.1 Integrating with OHI Components Applications
	2.2 Auditing and Exception Handling

	3 Soap Integration Points
	3.1 Attribute Handling
	3.1.1 Single Value Attributes
	3.1.1.1 Amount and Currency

	3.1.2 Non Time Valid Details
	3.1.3 Time Valid Details
	3.1.3.1 Parent Record Creation
	3.1.3.2 Parent Record Update

	3.2 Dynamic Free Fields, Codes and Records
	3.2.1 Free Field Values
	3.2.2 Code Values
	3.2.3 Dynamic Records Values

	3.3 File Based Integration
	3.3.1 File Import Batch Processing Request
	3.3.1.1 Allowed characters for File Paths

	3.3.2 Response File and Process Completion Notification
	3.3.3 Interface Task Log

	3.4 Service Based Integration
	3.4.1 OHI Components Web Services
	3.4.1.1 Synchronous Message Processing
	3.4.1.2 Asynchronous Message Processing

	3.4.2 OHI Components as Web Service Client (outbound requests)
	3.4.2.1 Synchronous Message Processing
	3.4.2.2 Asynchronous Message Processing

	3.5 Interface Messages Log
	3.5.1 Result Messages
	3.5.2 Interface Messages Log
	3.5.2.1 Interface Message
	3.5.2.2 Interface Message Details

	3.5.3 Interface Messages Log UI page

	3.6 Data Set Operations Integration Point
	3.6.1 Operation Requests
	3.6.1.1 Stop Dequeue
	3.6.1.2 Start Dequeue
	3.6.1.3 Build Data Set
	3.6.1.4 Save to File
	3.6.1.5 Import From File
	3.6.1.6 Import From Environment

	3.6.2 Response File

	3.7 Result Messages
	3.7.1 Indicating Success or Failure
	3.7.2 Result Messages

	3.8 Integration Testing
	3.8.1 Environment for Prerequisite Services
	3.8.2 Environment for Operational Services

	3.9 Web Service Versioning
	3.9.1 Compatibility
	3.9.2 Flexible Versioning Strategy
	3.9.3 Resolving Version Conflicts across Releases

	4 HTTP API Integration Points
	4.1 HTTP API resources in an OHI Components application
	4.2 Attribute Handling
	4.2.1 Single Value Attributes
	4.2.1.1 Amount and Currency

	4.2.2 Details
	4.2.3 Dynamic Fields and Records
	4.2.3.1 Dynamic Fields
	4.2.3.2 Dynamic Records

	4.2.4 Errors

	4.3 Response Messages
	4.3.1 Indicating Success
	4.3.2 Links
	4.3.3 Pagination
	4.3.4 Indicating Failure
	4.3.5 Failure Result Messages

	4.4 Data File Set Integration Point
	4.4.1 Creating a data file set with one or more files in conversation mode
(multiple requests).
	4.4.1.1 Step 1: Create Data File Set
	4.4.1.2 Optional: Create data file set with a data file
	4.4.1.3 Step 3: Add data to Data File

	4.4.2 Creating a data file set with multiple files in a single request
	4.4.3 Other Available Operations
	4.4.3.1 Get defined data file sets in the system
	4.4.3.2 Get details of a data file set
	4.4.3.3 Get details of a data file
	4.4.3.4 Update details of a data file set
	4.4.3.5 Update details of a data file in a data file set
	4.4.3.6 Delete a data file set
	4.4.3.7 Delete a data file in a data file set

	4.4.4 Error Messages

	4.5 Activity Integration Point
	4.5.1 Conversation Parameter
	4.5.1.1 Error Messages
	4.5.1.2 Examples

	4.6 File Based Import
	4.6.1 Example : Provider Import
	4.6.1.1 Step 1: Create data file set with a data file
	4.6.1.2 Step 2: Upload Content
	4.6.1.3 Step 3: Initiate the Provider Import Activity using Create Activity
(/activities)
	4.6.1.4 Step 4: Start Provider Import Activity
	4.6.1.5 Step 6: Get result messages
	4.6.1.6 Step 7: Get response file

	4.7 Seed Data
	4.7.1 Activity Types
	4.7.2 Flex Code Field Usages
	4.7.2.1 Dynamic Record Definition FILE_IMPORT

	5 Integrating multiple OHI Applications
	5.1 Data Replication

	6 User Interface Pages
	6.1 Desktop Integration
	6.1.1 Mock-up
	6.1.2 OHI Workbook
	6.1.2.1 Worksheet Section
	6.1.2.2 About Section

	6.1.3 Columns
	6.1.3.1 Standard
	6.1.3.2 Page Specific

	6.1.4 User Access
	6.1.5 Not Supported

	6.2 Search Function
	6.2.1 Quick Search
	6.2.2 Advanced Search
	6.2.3 Search Types
	6.2.4 From/To Search

