OHI Components -

Common Features
Guide

March 07, 2016

rights reserved
ORACLE

ORACLE’

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

License Restrictions War ranty/Consequential Damages Disclaimer

This software and related documentation are provided under alicense agreement containing restrictions on use and disclosure and are
protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy,
reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please
report them to usin writing.

Restricted Rights Notice

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government
customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation
and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the
restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government
contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc.,
500 Oracle Parkway, Redwood City, CA 94065.

Hazardous Applications Notice

This software or hardware is devel oped for general use in avariety of information management applications. It is not devel oped or intended
for use in any inherently dangerous applications, including applications that may create arisk of personal injury. If you use this software or
hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures
to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware
in dangerous applications.

Trademark Notice
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are
trademarks or registered trademarks of Advanced Micro Devices. UNIX isaregistered trademark of The Open Group.

Third Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information on content, products, and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party
content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/
topic/lookup?ctx=acc& id=docacc.

Accessto Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc& id=info or visit http://www.oracle.com/pl 'topic/lookup?ctx=acc& id=trs if you are hearing impaired.

OHI Components - Common Features Guide 1

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

ORACLE’

Table of Contents

1 Data Model 6
1.1 Activity and Data File Set Model 6
1.1.1 Activity Model 6

1.1.2 Data File Set Model 7

1.2 Trandlation 8
1.2.1 Concepts 8
1.2.1.1 Supported languages 9

1.2.1.2 Seed Data 9

1.2.2 Use Cases 10
1.2.2.1 Ingtallation in English 10

1.2.2.2 Ingtallation in English and French 10

1.2.2.3 Trandation of Seed Data 11

1.2.2.4 Trandation of messages one by one 11

1.2.2.5 Trandlation boilerplate entries one by one 11

1.2.2.6 Bulk trandation 12

1.2.2.7 Reinstallation 12

1.2.2.8 Creation of Business Data 12

1.2.2.9 Trandation of Business Data 12

2 Integration Concepts 14
2.1 Integrating with OHI Components Applications 14
2.2 Auditing and Exception Handling 14
3 Soap Integration Points 16
3.1 Attribute Handling 16
3.1.1 Single Value Attributes 16
3.1.1.1 Amount and Currency 17

3.1.2 Non Time Valid Details 17

3.1.3 Time Vdid Details 17
3.1.3.1 Parent Record Creation 18

3.1.3.2 Parent Record Update 18

3.2 Dynamic Free Fields, Codes and Records 26
3.2.1 Free Field Values 27

3.2.2 Code Vaues 28

3.2.3 Dynamic Records Values 29

3.3 File Based Integration 31
3.3.1 File Import Batch Processing Request 31
3.3.1.1 Allowed characters for File Paths 32

3.3.2 Response File and Process Completion Notification 32

3.3.3 Interface Task Log 33

3.4 Service Based Integration 33
3.4.1 OHI Components Web Services 34
3.4.1.1 Synchronous Message Processing 34

OHI Components - Common Features Guide 2

ORACLE’

3.4.1.2 Asynchronous Message Processing 34

3.4.2 OHI Components as Web Service Client (outbound requests) 34
3.4.2.1 Synchronous Message Processing 34

3.4.2.2 Asynchronous Message Processing 35

3.5 Interface Messages Log 35
3.5.1 Result Messages 35

3.5.2 Interface Messages Log 36
3.5.2.1 Interface Message 36

3.5.2.2 Interface Message Details 37

3.5.3 Interface Messages Log Ul page 37

3.6 Data Set Operations Integration Point 37
3.6.1 Operation Requests 38
3.6.1.1 Stop Dequeue 38

3.6.1.2 Start Dequeue 38

3.6.1.3 Build Data Set 38

3.6.1.4 Save to File 38

3.6.1.5 Import From File 39

3.6.1.6 Import From Environment 40

3.6.2 Response File 40

3.7 Result Messages 41
3.7.1 Indicating Success or Failure 41

3.7.2 Result Messages 41

3.8 Integration Testing 43
3.8.1 Environment for Prerequisite Services 43

3.8.2 Environment for Operational Services 43

3.9 Web Service Versioning 44
3.9.1 Compatibility 44

3.9.2 Flexible Versioning Strategy 44

3.9.3 Resolving Version Conflicts across Releases 45

4 HTTP API Integration Points 47
4.1 HTTP API resources in an OHI Components application 47
4.2 Attribute Handling 47
4.2.1 Single Vaue Attributes 47
4.2.1.1 Amount and Currency 48

4.2.2 Details 48

4.2.3 Dynamic Fields and Records 49
4.2.3.1 Dynamic Fields 49

4.2.3.2 Dynamic Records 54

4.2.4 Errors 58

4.3 Response Messages 59
4.3.1 Indicating Success 59

4.3.2 Links 59

4.3.3 Pagination 60

4.3.4 Indicating Failure 60

4.3.5 Failure Result Messages 61

3

OHI Components - Common Features Guide

ORACLE’

4.4 Data File Set Integration Point 63
4.4.1 Creating a data file set with one or more files in conversation mode (multiple
requests) 63

4.4.1.1 Step 1: Create Data File Set 63
4.4.1.2 Optional: Create data file set with a data file 64
4.4.1.3 Step 3: Add data to Data File 65
4.4.2 Creating a data file set with multiple filesin a single request 65
4.4.3 Other Available Operations 66
4.4.3.1 Get defined data file sets in the system 66
4.4.3.2 Get details of a datafile set 66
4.4.3.3 Get details of adatafile 66
4.4.3.4 Update details of a data file set 66
4.4.3.5 Update details of adatafilein a datafile set 67
4.4.3.6 Delete a data file set 67
4.4.3.7 Delete adatafile in a data file set 67
4.4.4 Error Messages 67

4.5 Activity Integration Point 67

4.5.1 Conversation Parameter 70
4.5.1.1 Error Messages 71
4.5.1.2 Examples 71

4.6 File Based Import 72

4.6.1 Example : Provider Import 73
4.6.1.1 Step 1. Create data file set with a datafile 73
4.6.1.2 Step 2: Upload Content 74
4.6.1.3 Step 3: Initiate the Provider Import Activity using Create Activity (/
activities) 74
4.6.1.4 Step 4: Start Provider Import Activity 74
4.6.1.5 Step 6: Get result messages 75
4.6.1.6 Step 7: Get response file 75

4.7 Seed Data 76
4.7.1 Activity Types 76
4.7.2 Flex Code Field Usages 76

4.7.2.1 Dynamic Record Definition FILE_IMPORT 76

5 Integrating multiple OHI Applications 77
5.1 Data Replication 77

6 User Interface Pages 85

6.1 Desktop Integration 85
6.1.1 Mock-up 85
6.1.2 OHI Workbook 85

6.1.2.1 Worksheet Section 85
6.1.2.2 About Section 86

6.1.3 Columns 87
6.1.3.1 Standard 87
6.1.3.2 Page Specific 89

6.1.4 User Access 89

6.1.5 Not Supported 89

OHI Components - Common Features Guide 4

ORACLE’

6.2 Search Function 89
6.2.1 Quick Search 90
6.2.2 Advanced Search 90
6.2.3 Search Types 90
6.2.4 From/To Search 91

OHI Components - Common Features Guide 5

ORACLE’

1 Data M oddl

1.1 Activity and Data File Set Model

1.1.1 Activity Model

This entity holds the types of activitiesthat are used for bulk data processing. All activity types
are seeded and are not user maintainable.

Activity Type

Field

Description

Code

Unique code of the activity type

Description

Description of the activity type

Active Indicator

Indicates if the activity type is active and can be
used

Display in Ul Indicator

Indicates if activities of an activity type can be
viewed in the Ul or not

Top Leve Indicator

Indicates if the activity type can be started directly

Type Level

Level on which the activity can be started

e GL-Globd
e TS-Transaction Set
* BF- BaseFinancia Object

Dynamic Record Definition

Association to the dynamic record definition that
defines the fields that are available as parameters for
activities of an activity type and for the parameter
sets created for that activity type

An activity record is a control record for tracking specific execution details of an activity type.

Activity

Field

Description

Activty

The activity that spawned this activity

Activity Type
Description
Internal Remark
ExtraInfo
Origin

The activity type to which this activity belongs to
Description of the activity

Unstructured remarks about the activity

Data with additional processing information

The origin of the activity

e | -Integration Point
e M- Manua
e S- Spawned

Run Datetime

Date and time on which the activity was started

OHI Components - Common Features Guide

ORACLE’

Status

Parameter Set

Status of the activity

* BE - Businesserror
Business errors are foreseen situations in the processing of
an activity, foreseen meaning that the situation isidentified
in the processing description and leads to a specified error.
Recovery of abusiness error normally requires changesto the
configuration and/or reference data.

e CB - Completed with business errors
This statusis set for a spawning activity if one or more of
the spawned activities has a Business Error and none has a
Technical Error.

e CT - Completed with technical errors
This statusis set for a spawning activity if one or more of the
spawned activities has a Technical Error.

e CO- Completed
This statusis set if the activity itself and all of the spawned
activities are completed without any (business or technical)
errors.

e IN-Initia

e |P-Inprocess

e TE- Technical Error
Technical errors are unforeseen situations in the processing
of an activity, caused by for example coding errors or
unavailability of system services or resources. Recovery
of atechnical error caused by erroneous dynamic logic
requires debugging the dynamic logic code.Recovery of other
technical errors mostly requires actions at system operating
level like enabling the system services or resources.

Reference to the parameter set that was used to start the activity

Dynamic Record

Reference to the dynamic record that is added to an activity based on the
activity type of the activity.

Constraints:

¢ Anactivity cannot reference both a parameter set and have a parameter values dynamic

record.

Activity can cause activity messages.

Activity Message

Field Description

Code Code of the message

Element Id Thisisfor logical grouping of the messages by referencing them to the
unit of processing for the activity

Subject Id Reference to subject involved

Table Reference to the entity for which the message is meant for, e.g. a
relation. Subject Id is aways used in combination with areference to
entity, where subject id holds the id within the context of that entity

1.1.2 Data File Set Model

A Datafile set isacollection of the data file(s) which are either uploaded to or generated for
extraction by OHI Claims application.

OHI Components - Common Features Guide

ORACLE’

Data File Set
Field Description
Code The unique identification code of the datafile set
Description Description of the data file set
Indicator Locked Indicates if the datafile set is available for
modification or not
Constrains:

« Datafileset that is locked cannot be modified.
e Datafile set that islocked cannot be picked up for processing by an activity type.

Data File

Field Description

Code The unique identification code of the data file within a datafile set

Description Description of the datafile

Content Length Size of the datafile

File Data The contents of the datafile

File Path The path of the uploaded file

MIME Type The content type of the datafile

DataFile Set Reference to the datafile set to which the data file belongs
|

1.2 Trandation

This chapter describes multi language support in OHI Claims. Use cases are included to describe
installation in multiple languages. This page also describes the translation of seed data and
business data.

1.2.1 Concepts

OHI Claims supports multiple languages. It will display texts and messages in the Display
L anguage chosen by the end user in the User Preferences Page.

This appliesto several categories of items:

1. Boailerplate. Thisrefersto all 'fixed' items on pages like prompts, headings, titles and menu
options.
2. Messages. Text of warnings and error messages.

3. Businessdata. Many entitiesin OHI Claims have translatable text items. Examples: Code
and Description of Tag Types, Display Name of Fields etc.

Every entity that contains translatable attributes, isimplemented as a base table and a trand ations
table. The non-trandatable columnsin the table are stored in the base table, that is given a

_B suffix. The trandatable columns are stored in the translations table, that isgivena_TL

suffix. The BASE_TABLE ID stored inthe TL links atranglation to the base. The TL tableis
striped by a LANGUAGE column.

Example: MESSAGE entity

Non tranglatable items of a MESSAGE are stored in OHI_MESSAGES B. The message attribute
istrandatable, and thus implemented in the OHI_MESSAGES TL. (This example does not show
all columnsof B and _TL, but only afew to clarify the concept)

Base Table OHI_MESSAGES B

OHI Components - Common Features Guide 8

ORACLE’

ID CODE SEVERITY

1 OHI_DUMMY_001 ERROR

2 OHI_DUMMY _002 WARNING

Translation Table OHI_ MESSAGES TL

ID | LANGUAGE SOURCE_LANG MESSAGE

1 |en_OHI en_ OHI Maximum exceeded

1 |en en_ OHI Maximum exceeded

1 |nl nl Maximum overschreden

2 |en_OHI en_ OHI No permission was granted for this
2 |en en_ OHI No permission was granted for this
2 |nl nl Er is hier geen toestemming voor gegeven

TheID columninthe _TL tablerefersto the base row in the B table, and both the LANGUAGE
and SOURCE_LANG columninthe TL table refer to atable with supported languages.

4 ENTITY_TL F

OHI_LANGUAGES

ENTITY_B

When displaying datafrom a_TL table in a screen, the value shown is taken from the row where
language equal s the Display Language the user has set in the User Preferences page.

SOURCE_L ANG determines the source language of a_TL row. In the example above, the rows
in OHI_MESSAGES TL for language 'en' have SOURCE_LANG 'en__OHI', meaning that these
rows are copied from the language 'en__ OHI' during installation and not translated/changed yet.
When the user changes atrandatable item, the SOURCE_LANG is set to the current language of
the user. This has been done for the _TL rows for language 'nl' in the above example.

So, the Language column in aTL table is used to select the row that matches the Display
Language of the current user. The Source_lang column determines the language from which the
tranglatable items originate.

1.2.1.1 Supported languages

The OHI_LANGUAGES table contains the list of supported languages. Per language, several
indicators define the possible roles of alanguage. See table below:

Indicator Column

Purpose

Allowed to change by
customer

Number of languages
with value'Y" for this
I ndicator

which the application
can run.

ind_default the language in which Yes. Should besettoan |1
trandatable items are installed language
shown when no user
preferenceis set.
ind_ohi_specific "Y' for languages for No. 1
which seed datais
delivered.
ind_installed "Y' for languagesin Only beforeinstallation | 2 or more

1.2.1.2 Seed Data

Both Boilerplate and Messages are delivered as seed data upon installation. For Boilerplate, the
customer cannot enter new rows. Customers can add new messages. Seeded messages are marked
as OHI Specific and cannot be changed by the customer.
Seed datais only delivered in supported languages. Currently, thisis only English. To facilitate
tranglation of terminology, a dedicated language is created for seed data delivery: OHI English
(code=en__ OHI). Upon installation, the seed dataiis loaded in OHI Claims under language

OHI Components - Common Features Guide

ORACLE’

‘English’ and 'OHI English'. Customers can translate seed datain the 'English’ language, but not in
the 'OHI English’' language.

1.2.2 Use Cases

1.2.2.1 Installation in English

Customers want to run OHI Claimsin English only. Before installation, the following values
should be set in OHI languages.

Code Ind Default Ind OHI Specific Ind Installed
en Y N Y
en_OHI N Y Y
all other languages N N N

During installation, the seeded value for OHI English will be copied to English.

Take for example the message GEN_UINT_002, with text 'Validation errors found, changes are
not saved.' Seed datais delivered for language 'en_ OHI'".

After installation, the contents of the OHI_MESSAGES _TL table are asfollows:

Code Sour ce Language Language M essage

GEN_UINT_002 en__ OHI en_ OHI Validation errors found,
changes are not saved.

GEN_UINT_002 en_OHI en Validation errors found,
changes are not saved.

Codeis not really acolumn of OHI_MESSAGES TL, but aforeign key to the _B table.
It is shown thisway to clarify the concept.

% Exactly the same concept applies to boilerplate texts.

1.2.2.2 Installation in English and French

Customer wants to run OHI Claimsin English (default) or French. Before installation, the
following values should be set in OHI languages.

Code Ind Default Ind OHI Specific Ind Installed
en Y N Y
en_ OHI N Y Y
fr N N Y
all other languages N N N

During installation, the seeded value for OHI English will be copied to English and French.
After installation, the contents of the OHI_MESSAGES TL table are as follows:

Code Sour ce Language Language M essage
GEN_UINT_002 en_OHI en_ OHI Validation errors found,
changes are not saved.
GEN_UINT_002 en_ OHI en Validation errors found,
changes are not saved.
GEN_UINT_002 en_ OHI fr Validation errors found,
changes are not saved.

Noticethe value en OHI of the Source Language column, meaning that the records for en and fr
are copied from the OHI English value.

OHI Components - Common Features Guide 10

ORACLE’

1.2.2.3 Trandation of Seed Data

After installation, the seed data can be translated either because of the use of a different language,
or because the customer uses business terminology that deviates from the seeded data. For
example the seeded data uses the term 'Provider Group' whereas the customer uses the term
‘Network' for the same concept.

Translation can be done as follows:

Set the Display Language in the User Preferences to the language for which seed data should
be translated.

Use the Bulk Translation function to translate multiple boilerplate texts and messages in one
go. Thisoption is most appropriate when translating business terminology.

Use the Messages and Boilerplate functions to translate records one by one.

See the next three use cases for details.

1.2.2.4 Trandation of messages one by one
Example for trandlation of GEN_UINT_002 to French:

1
2.
3.

4,

Set the Display Language to 'French'

Go to the Setup Messages page and query GEN_UINT_002.

The Messages page will display the French record with the non-translated Message
'Validation errors found, changes are not saved.'

User changes the message text to 'Les erreurs de validation trouvé, les changements ne sont
pas enregistrées.’ (translated by Google).

The contents of the OHI_MESSAGES TL tableis now asfollows:

Code Sour ce L anguage Language M essage

GEN_UINT_002 en_ OHI en_ OHI Validation errors found,

changes are not saved.

GEN_UINT_002 en_ OHI en Validation errors found,

changes are not saved.

GEN_UINT_002 fr fr Les erreurs de validation

trouvé, les changements
ne sont pas enregistrées.

Only the French row is changed. Notice the change of the Source Language column.

1.2.2.5 Trandation boilerplate entries one by one
Steps to translate menu- and display titles; use 'Network' instead of 'Provider Group":

1
2.

Set the Display Language to 'English’

Go to the Setup Boailerplate Texts page and query the boilerplate texts with code like
'rel_providergroup_title%'.

The Messages page will display the matching boilerplate texts entries with values in OHI-
English.

User changes the text values of the boilerplate texts by replacing the term '‘Provider Group'
by 'Network'.

The contents of the OHI_MESSAGES TL tableis now asfollows:

Code Sour ce Language Language Text Value
REL_PROVIDERGROUPEeNI TDHISINGULAR en__ OHI Provider Group
REL_PROVIDERGROUPRERITLE_SINGULAR en Network

OHI Components - Common Features Guide 11

ORACLE’

REL_PROVIDERGROU%g’rﬁﬂOELISINGULAR fr ‘ Provider Group ‘

1.2.2.6 Bulk trandlation

Instead of trandlation of boilerplate text entries and messages one by one, bulk translation can
translate multiple items at once. When trandlation of business terminology is needed, it is most
likely that multiple messages and boilerplate text entries have to be changed.

Steps to use 'Network' instead of 'Provider Group' in boilerplate and messages:

1. Setthe Display Language to 'English’
2. Gotothe Bulk Tranglation page.

3. Enter '%provider group%' as search value. All matching messages and boilerplate entries are
shown.

4. Enter ‘provider group' for Term From and 'network’ for Term To and press trand ate.

5. All occurrences of 'provider group' in the matching messages and boilerplate entries are now
replaced by 'network'. These changes are not committed yet.

6. Review the changes and make correctionsif necessary.
7. Commit the changes by pressing 'Save'.

1.2.2.7 Reinstallation

During reinstallation, only rows with Source Language 'en__ OHI" will be overwritten. Trandlated
values with other source language values will be retained.

1.2.2.8 Creation of Business Data

When new business data is created, text values are duplicated to the other installed languages
using the same approach as during installation.

Example:

e en_ OHI, enand fr areinstalled languages.
¢ User has Display Language set to French.

User creates a new Tag Type 'Personne trés Importante’. The contents of the
REL TAG TYPES TL table are now asfollows:

Code Sour ce Language Language Description

PTI fr fr Personne trés Importante

PTI fr en Personne treés
Importante.

PTI fr en_ OHI Personne trés Importante

1.2.2.9 Trandation of Business Data

After creation of the tagtype using the steps in the previous paragraph, the user switchesto
English and changes the code and description to VIP, Very Important Person.

The contents of the REL_TAG_TYPES TL table are now asfollows:

Code Sour ce Language Language Description

PTI fr fr Personne trés Importante
VIP en en Very Important Person.
PTI fr en_ OHI Personne trés Importante

From the Ul, it is not possible to see which items are translatable and which are not. This query
listsal itemsin _TL tables:

set pagesize 100

OHI Components - Common Features Guide 12

ORACLE’

set linesize 100
set escape of f

select table_name, column_name from all_tab_columns where table_namelike'%\ TL' escape \'
and column_namenot in (BASE_TABLE _ID"'ID'/LANGUAGE','SOURCE_LANG")

order by table_name, column_name

/

OHI Components - Common Features Guide 13

ORACLE’

2 I ntegration Concepts

OHI Components applications are designed to operate as a component in a component-based or
service oriented architecture. This guide provides an overview of the

integration capabilities of OHI Components applications. Additional information with respect to
OHI Components applications integration pointsis available in other guides, for example:

¢ Seethelnstallation Guide for service endpoint URLS and configuration options for these
e Seethe Security Guide for guidance on properly securing integration endpoints

I
2.1 Integrating with OHI Components Applications

This chapter introduces techniques and patterns used for integrating with OHI Components
applications. The following principles played an important role for designing the integration
services:

e Use of well-known, proven standards that are widely supported by tools and middleware of
many vendorsin the I T industry

e Avoid interoperability issues, allowing customersto use OHI Components applications with
the IT servicesthey aready own and operate

Common integration techniques used in OHI Components applications are:

e File-based integration is used for importing or exporting large sets of data. Examples
include imports of ICD-9 or ICD-10 code systems and export of financial messages that are
generated in OHI Components Claims or OHI Components V aue-Based Payments.

¢ SOAP web services are used for exchanging business data with other applicationsin a health
insurance payer’s T landscape. For SOAP web servicesin OHI Components applications
the *service contract’ is defined by Oracle in the form of aWSDL that defines the service
operations and X SDs that define the message payloads. Oracle a so definesthe WSDL and
XSDsfor web servicesthat are called from OHI Components applications.

e RESTful style web services are also available for interacting and integrating with OHI
Components applications. Formal specifications for RESTful servicesis available in the form
of RAML documents that are bundled with each application.

Going forward, any new services will be devel oped as RESTful services, no new SOAP services
will be added.

Oracle develops SOAP web services with JAX-WS, the reference implementation for developing
SOAP web services in Javawhereas RESTful services are constructed using JAX-RS, the
reference implementation for developing RESTful web servicesin Java.

All web services in OHI Components applications perform statel ess operations.

]
2.2 Auditing and Exception Handling

In a component architecture it is paramount that interaction between systems can be tracked
and audited. The following isalist of system behaviors and features that support auditing and
exception handling in OHI Components:

¢ Messagesthat indicate any kind of failure are always logged. Messages that confirm a
successful result within the context of synchronous interaction are not logged. The overhead

OHI Components - Common Features Guide 14

OHI Components - Common Features Guide

ORACLE’

for logging these would impact the performance of these relatively lightweight operations.
Messages that indicate failure are logged together with data that can help to determine the
cause.

If an OHI Components application cannot deliver a message, it will not retry that operation
instantly. This behavior is based on the underlying assumption that a network failure that
prevents successful interaction is not going to be resolved instantly. Instead, atask is raised
for delivering the message at alater moment in time, to be triggered by a system operator as
soon as the network is restored.

For SOAP services, OHI Components applications can validate if message payloads adhere
to the XSD specification. This featureis configurable on a per web service basisand is
disabled by default for performance reasons.

The logging subsystem can be configured to gather message payloadsin log files. Specific
measures can be taken for logging message payloads that may contain protected health
information. Additional details for checking interfaced messages and results of processing
these are documented elsewhere in this guide.

15

ORACLE’

3 Soap I ntegration Points

3.1 Attribute Handling

Each integration point request message contains data values of atop-level entity (e.g. relation

or provider) that have been created or updated in a source system. Within each message are
several categories of data such as simple entity-level attributes, lists of non-time valid details, and
lists of time-valid details. This section describes how each category of datais handled by OHI
applications and also covers guidelines for handling differencesin data categories between source
systems and OHI applications.

The way that an OHI application handles web service requests is based on the principle that the
copy of information in the OHI application is to be kept up-to-date with the (master) information
in the system of record. It isnot required that the OHI application isinformed of every update
system of record; only the values at the time of creating the web service requests are important.
For example, if an interface periodically creates requests for all outstanding additions and
updates, only the values of source system data at the time that the interface is run need to be sent.
Whether arecord has been updated several times or once since the last interface run isirrelevant.

If an existing record is sent again and it contains the exact same data that is already stored in the
system, the existing data will not be updated. This means that the audit columns in the database
will also remain unchanged. Tracking these messages can be done through the interface messages

log.

3.1.1 Single Value Attributes

These are fields that can have only one single value and the value does not have a start and end
date. When the application creates a new record, single value attributes are handled as follows:

if the attribute is not included in the request, then the corresponding attribute in the new record
will be set to null; if the attribute is included in the request, then the corresponding attribute in the
new record will be set to the specified value.

When the application updates a record, a single value attribute is handled as follows: if the
attribute is not included in the request, then the existing value in the application remains
untouched; if the attribute is included in the request, then the attribute value is updated with the
specified value.

For example, consider a new relation being added in the system of record. Because the OHI
application keeps alocal copy of relation records, the system of record sends the following
request to the OHI application:

<rel ation
code="1333"
name=Jones

>
<personDetail s

firstName="John"

>

>

Since thisisthe first time that the relation with code 1333 is being sent, the OHI application
creates a new relation record with only code, name, and firstName having values. All other
attributes in the new record in the OHI application will be null. The relation is updated in the
source system; the first name is changed from "John" to "Jonathan". The system of record sends
the following request to the OHI application:

<rel ation
code="1333"
>

<subTypeDet ai | s>

OHI Components - Common Features Guide 16

ORACLE’

<person
first Name="Jonat han"
>

</ subTypeDet ai | s>
</relation>

Since there is already arelation with this code, the OHI application will update the relation record
with code = 1333 setting <person firstName> to Jonathan. <Relation name> will not be changed
or set to null.

External Interface Design Notes

If agiven type of datais asingle value attribute in an Integration Point message definition and
atimevalid detail list in the source system, the external interface is expected to only send the
latest / current value.

If agiven type of dataisasingle value attribute in an Integration Point message definition and a
non time valid detail list or otherwise not a one-to-one match in the source system, the external
interface will require (dynamic) logic needed to determine what value should be provided.

3.1.1.1 Amount and Currency

Amount and currency are two attributes that belong together, so they are always represented
together in a separate element. For example:

<aut hori zedAnount
anount =" 100"
currencyCode="USD"
/>

If the element is not included in the request, then the existing values for amount and currency in
the application remain untouched; if the element isincluded in the request, then the values are
updated with the specified values. In order to send in an update that clears the values, the update
request should include the element without any attributes and values (empty element).

3.1.2 Non Time Valid Details

This category coversalist of details (of single values or of detail records) that are details of a
parent entity but that are not time valid (i.e. each detail record does not have start and end dates),
such asrelation titles or tags.

When the OHI application creates new records (for an entity with anon time valid detail list):

* |f thedetall list element is not included, no details are added
« if adetall list element isincluded, one detail record for each included detail item is created

When the OHI application is updating an existing record (for an entity with anon time valid
detail list):

¢ If thelist element is not included, no changes to current details are made

e If alist element isincluded, included detail items completely replace current detail records
(in effect, all current detail records that have not been resent (i.e. for which thereis no detail
item with exactly matching values) are removed and one detail record for each included
detail item (that is not a'resend’) is created)

e If anempty list element isincluded, all current detail records are removed

3.1.3 Time Valid Details

This category refersto alist of details within a parent entity that istime valid (i.e. each item of
the list has a start and an end date). The items of the list have one or more single value attributes
(in addition to the start and end dates) and may themselves contain alist of details. For example,
aproduct (parent record) may have multiple provider groups (time valid details). The link
between each product and provider group has a start and an end date.

OHI Components - Common Features Guide 17

ORACLE’

Lists of details may have a'detail functional key'. A detail functional key refersto akey of list
items/ detail records that is unique within alist of details at a specific point intime. In effect
ahistory of values is maintained per detail functional key. An example of alist of details with
adetail functional key is relation addresses. In this case, address type is the detail functional
key and there may only be one address of each type current at any point in time; however, there
may be more than one address current at the same point in time if they are of different types.

An example of alist of details without a detail functional key is marital status of relations. In
this case, there may only be one marital status current at any given point of time. The following
sections describe how the various conditions related to time valid details are handled.

3.1.3.1 Parent Record Creation
When the OHI application creates a new record (for an entity with atime valid list of details),

* if thelist element is not included, no details are added,
« if alist element isincluded, one detail record is created for each item of thelist.

3.1.3.2 Parent Record Update

When the OHI application updates an existing record (for an entity with atime valid list of
details), one of the following situations applies:

¢ nolist element isincluded

¢ thelist element isincluded without list items and without a resendFromDate
* thelist element isincluded without list items, but with a resendFromDate

¢ thelist dement isincluded with list items

In the first two situations, no changes to current details are made. In the third and fourth situation,
i.e., alist with items or/and a resendFromDate, the OHI application updates the list on the
existing record. How that detail list is updated depends on several conditions related to the
message contents and what is aready stored in the OHI application. This decision table indicates
for the various combinations of conditions which updates are made. Each of these scenariosis
described separately following the table.

Conditions Expected Results
Start Date Starts | Starts End Update Create Delete
Match During |BeforelLast | Overlap Matched Period Later
Period Period Period Period Period(s)
1 Y N Y X X
2. Y N N X
3. N Y Y X X X
4. N Y N X X
5. N N Y X X
6. N N N X

Essentially, the detail list in a parent record update replaces the detail list of the existing record,
going forward from a specific date. That date can either be explicit in the update request (the
attribute 'resendFromDate’) or, if not made explicit, it defaults to the earliest start date of the
detail list in the update request.

For example, suppose arelation has had a number of addresses starting on from the 1st of Jan
2008. Therelation is updated with alist of addresses in which the first address starts on the 1st of
Jan 2009. The update does not specify an explicit resendFromDate, so it defaults to the 1st of Jan
2009. The existing address history between Jan 1st 2008 and Dec 31st 2008 remains intact.

The following two diagramsiillustrate the scenarios using marital status. Scenario 1 through 6
presume no explicit resendFromDate is specified. Scenario 7 clarifies what happens in the event
that the resendFromDate is explicit.

OHI Components - Common Features Guide 18

OHI Components - Common Features Guide

ORACLE’

'Create’ indicates what has already been created and is present in the OHI application when the
'‘Update' is received. The result indicates what the situation will be in the OHI application once
the update is processed.

3.1.3.2.1 Matching Start Date (Scenarios 1 and 2)

Time
Current I Divorced I Married
Current I Single I Marriedl Divorced
Update I Widow
Result | Widow

Figure 3-1: Examples of scenario 1

. Time »
[Current l Divorced | Widow I
Updste
| Result l Divorcad | Married |
[Current I Mamied I Divorced I
Update Widow| Marled
Result | Maried |Widow| Maried

Figure 3-2: Examples of scenario 2
Detail Functional Key

If anew itemisreceived in amessage and there is arecord present with the same detail
functional key and amatching start date, this record will be updated with new values from the
message (if any of the values differ). Any record with the same detail functional key that starts
after the start date of the new item that has not been resent will be deleted. Note that end date is
treated in the same way as other fields.

No Detail Functional Key

If anew itemisreceived in amessage and there is arecord present with the same start date,
this record will be updated with new values from the message (if any of the values differ). All
records that start after the start date of the new item that have not been resent will be deleted.
Note that end date is treated in the same way as other fields.

Examples
An address (that is aready stored in the OHI application) is corrected in the source system by
changing it from

Site (S), 122 Jefferson Ave, New York (2005-1-1 - 2008- 6- 30)

to

Site (S), 128 Jefferson Ave, New York (2005-1-1 - 2008-6-30)

The external interface needs to send the latest details:

19

ORACLE’

<addr ess
type="S"
houseNunber =" 128"
st art Dat e="2005- 1- 1"
endDat e="2008- 6- 30"
/>

The OHI application will then update its previously stored copy of the address.

An address (that is aready stored in the OHI application) is ended in the source system by
changing it from

Site (S), 1422-3rd Ave, New York (2008-1-1 -)
to

Site (S), 1422-3rd Ave, New York (2008-1-1 - 2009- 8- 31)

The external interface needs to send these details:

<addr ess
type="S"
st art Dat e="2008- 1- 1"
endDat e="2009- 8- 31"
/>

The OHI application will then update its previously stored copy of the address with the new end
date.

Note: In this example, <address type> is the detail functional key.

3.1.3.2.2 Values Updated (starting a new period during an existing period) (Scenario 3 and 4)

Time
[Current I Married | Divorced |
Update
_Rasult I Married I Widow I
[current l Single | Married] Widaw [Married I
Update | single Jarriec] Divorced | Widow [Matrie.d I
| _Result | Single |Mari=d] Divorced | Widow | Married |

Figure 3-3: Examples of scenario 3

Time
[current | Single | Maried |
Update
| Resut | Single [wemec| Divorced |
[current l Divorced [varies| Single
Update I Married
Result | Divorced |waniedjsinge] Married

Figure 3-4: Examples of scenario 4

OHI Components - Common Features Guide 20

ORACLE’

Detail Functional Key

If anitemisreceived with a start date that is after the start date of the last record with the same
detail functional key and the last record has no end date , the last record will have its end date
updated to the day before the start date of the new detail record and a new record will be created
with the new details from the message.

Likewise, if anitemisreceived with a start date that is between the start date and end dates of a
record with the same detail functional key:

e thisrecord will have its end date updated to the day before the start date of the new detail
record

e any record with the same detail functional key that starts after the start date of the new item
that has not been resent will be deleted

* thenew address will be stored

No Detail Functional Key

If an item isreceived with a start date that is after the start date of the last record and the last
record has no end date , the last record will have its end date updated to the day before the start
date of the new detail record and a new record will be created with the new details from the

message.

Likewise, if anitem isreceived with a start date that is between the start date and end dates of a
record:

e thisrecord will haveits end date updated to the day before the start date of the new detail
record

e any record that starts after the start date of the new item that has not been resent will be
deleted

¢ thenew address will be stored

Example

A new address is recorded in the source system when there is already an address (for the same
detail functional key, in this case address type) stored in the OHI application.

Address before adding new address:

Site (S), 1223-9th Ave, New York (2008-7-1 -)

New address with effective date 2009-8-1

Site (S), 544-E 35th Street, New York (2009-8-1 -)

The external interface only needs to send the new address details:

<addr ess

street="E 35th Street"

houseNunber =" 544"

st art Dat e="2009- 8- 1"
/>

The OHI application will then update its previously stored copy of the address with an end date
and store the new address.

Site (S), 1223-9th Ave, New York (2008-7-1 - 2009-7-31)
Site (S), 544-E 35th Street, New York (2009-8-1 -)

Alternately, the external interface could send both addresses with both changed and unchanged
details:

OHI Components - Common Features Guide 21

ORACLE’

<addr ess

street="9th Ave"
houseNunber ="1223"
ci ty="New York"
st art Dat e="2008-7- 1"
endDat e="2009- 7- 31"
/>
<addr ess

street="E 35th Street"

houseNunber =" 544"

ci ty="New York"

st art Dat e="2009- 8- 1"
/>

This would have the same result in the OHI application.
Example 1

A new (past) addressis recorded in the source system when there are already addresses (for the
same detail functional key, in this case address type) stored in the OHI application.

Addresses (in both the source system and the OHI application) before adding new address:

Site (S), 122 Washington St, New York (2007-1-1 - 2008-4-30)
Site (S), 185-7th Ave, New York (2008-5-1 -)

Addresses after adding new address:

Site (S), 122 Washington St, New York (2007-1-1 - 2008-1-31)
Site (S), 342 E 46th Street, New York (2008-2-1 - 2008-4-30)
Site (S), 185-7th Ave, New York (2008-5-1 -)

The external interface needs to send the new addresses and all addresses that start after it:

<addr ess
type="S"
street="E 46th Street"
houseNunber =" 342"
city="New York"
st art Dat e="2008- 2- 1"
endDat e="2008- 4- 31"
/>
<addr ess
type="S"
street="7th Ave"
houseNunber =" 185"
city="New York"
start Dat e="2008-5- 1"
/>

The OHI application will then update the end date of the address that end after the start date of
the new address and replace later addresses with the newly provided addresses resulting in:

Site (S), 122 Washington St, New York (2007-1-1 - 2008-1-31)
Site (S), 342 E 46th Street, New York (2008-2-1 - 2008-4-31)
Site (S), 185-7th Ave, New York (2008-5-1 -)

Alternately, the external interface could also send the address that needed to be updated with the
new end date:

<addr ess

street ="Washi ngton St"
houseNunber =" 122"

ci ty="New York"

start Dat e="2008- 2- 1"

OHI Components - Common Features Guide 22

endDat e="2008- 4- 31"
/>
<addr ess
type="S"
street="E 46th Street"
houseNunber =" 342"
city="New York"
st art Dat e="2008- 2- 1"
endDat e="2008- 4- 31"
/>
<addr ess
type="S"
street="7th Ave"
houseNunber =" 185"
city="New York"
st art Dat e="2008- 5- 1"
/>

with the same result in the OHI application.

Example 2

A new marital Status is added 'within' the periods of a previous status:

Origina marital Status list:

Single (2007-1-1 - 2008-4-31)
Married (2008-5-1 -)

List after adding new status

Single (2007-1-1 - 2007-10-31)
Married (2007-11-1 - 2008-1-31)
Single (2008-2-1 - 2008-4-30)

Married (2008-5-1 -)

ORACLE’

The external interface will need to send all periods starting with the period that has been added:

<marital Status
status="Married"
start Dat e="01- 11- 2007"
endDat e="31- 01- 2008"
/>
<marital Status
st at us="Si ngl e"
start Dat e="01-02-2008"
endDat e="31- 04- 2008"
/>
<marital Status
status="Married"
st art Dat e="2008- 5- 1"
>

The OHI application will then end the first status and replace the later statuses with the new ones

from the message.

OHI Components - Common Features Guide

23

ORACLE’

3.1.3.2.3 Late Addition of a Detail Item (Scenario 5)

Time
[Current I Divorcad I Married I
Update
Current | Divorced | Single |
Update
[Resul

Figure 3-5: Examples of scenario 5
Detail Functiona Key

If anitemisreceived with a start date before the start date of the last record with the same detail
functional key and it does not start between the start and end dates of another record with the
same detail functiona key:

e any record with the same detail functional key that starts after the start date of the new item
that has not been resent will be deleted

* thenew address will be stored

No Detail Functional Key

If an item isreceived with a start date before the start date of the last record and it does not start
between the start and end dates of another record:

e any record that starts after the start date of the new item that has not been resent will be
deleted

* thenew address will be stored

External Interface Design Notes

In effect, what this approach meansisthat when atime valid detail record is sent, all subsequent
detail records (for the same detail functional key if applicable) need to be sent as well.

If agiven type of datais atime valid detail list in an Integration Point message definition and a
single value attribute (set of attributes) in the source system, the external interface is expected to
send the current values in the time valid detail list with afixed start date (earlier than would ever
be referred to) and a null end date.

If agiven type of dataisatimevalid detail list in an Integration Point message definition

and anon time valid detail list or otherwise not a one-to-one match in the source system, the
external interface is expected to apply (dynamic) logic needed to determine what value should be
provided.

OHI Components - Common Features Guide 24

ORACLE’

3.1.3.2.4 No Overlapping Dates and No Later Periods (Scenario 6)

Time
Update
_Resull | Married | Divorced |
[current I Widow I Married I
Update | Divorced
| Result | widow | Married | Divorced

Figure 3-6: Examples of scenario 6
Detail Functiona Key
If anew itemisreceived in amessage and for the item;

e there are no records present with the same detail functional key,

e there are records present with the same detail functional key but the new item starts later then
any of these records ends,

adetail record is created for the item.
No Detail Functional Key
If anew itemisreceived in a message and:

* thereareno current items, or
¢ all current items end before the new item starts,

adetail record is created for the item.

3.1.3.2.5 Explicit Resend Date (Scenario 7)

Time

s} = resendFromDate

™ Curen
Update ¥
Curent | widow | Married |
Update J I Divorced
Result I Divorced
Current | widow | maried | Divorced |
Update Jr

_Rasul[Widow

Figure 3-7: Examples of scenario 7

In scenario 1 through 6, the detail item list is updated going forward from the start date of the
first list item in the update request. As a consequence, the updates in these scenarios always entail

OHI Components - Common Features Guide 25

ORACLE’

the creation of a new item on that date going forward. In order to update a detail item list in such
away that alist item is removed without replacement, the list header element must specify a
resendFromDate. This has the following effect:

e All existing list items that start on or later than the resendFromDate are deleted

e All existing list items that start before and end on or later than the resendFromDate are ended
one day prior to the resendFromDate

¢ All existing list items that end before the resendFromDate remain untouched
e Theexisting list is updated with the list items in the update request.

In the event that one of the list itemsin the update request has a start date prior to the specified
resendFromDate, the resendFromDate is ignored and the update will be accordance with scenario
1 through 6. In the event that the update request only specifies the list header element with a
resendFromDate, the existing list is simply updated in accordance with the bullets above, but no
new items are added to that list as aresult of the update.

Note that lists with and without detail functional key are handled in the same way, i.e., a specified
resendFromDate removes all items from that date going forward.

External Interface Design Notes

When using the resendFromDate all items of a given list for all detail functional keys with a start
date on or after the resendFromDate need to be resent. Thisis different than in the other scenarios
where only items of a single detail key need to be resent.

Example 1
Origina marital Status list:

Single (2007-1-1 through 2008-4-31)
Married (2008-5-1, no end date)

Update request message:

<marital StatusLi st
r esendFr onDat e="2007-07- 01>
<marital Status
status="Married"
start Dat e="2007-11- 01"
/>
</marital StatusList>

This update will remove all marital status information going forward from the resendFromDate,
i.e., 2007-07-01. Thiswill cause the existing item "Single" to be end dated on 2007-06-30, and
will entirely remove the existing item for "Married". A new "Married" item is added to the list.
List after the update:

Single (2007-1-1 - 2007-6-30)
Married (2007-11-1, no end date)

I
3.2 Dynamic Free Fields, Codes and Records

This section describes the default behavior of integration points that accept dynamic field,

code and record values. The configuration of the relevant dynamic field usages drive how the
integration point processes a request with new dynamic field values. The driving aspects are the
usage type (field, code or record), whether the field can have multiple values, whether the field
valeistime vaid and whether the field values have a key identifier.

Dynamic field values can be created and updated through the <dynamicField> element. The
name attribute in this element identifies the field that is created or updated. If an update request
does not include a <dynamicField> element for a dynamic field usage with existing values, then
those existing values are not touched. In other words, the default behavior for an integration point

OHI Components - Common Features Guide 26

ORACLE’

isthat an update request without a <dynamicFields> element leaves all existing dynamic field
values intact.

This section describes update behavior in particular, since the initial insertion of new valuesisthe
same across all types and usage configuration.

3.2.1 Free Field Values

Like any dynamic field, free fields can be configured to have multiple values and these values
can be configured to be time valid. Free field values are either dates, numbers or character
strings; they never have a functional identifier. This makes the update behavior straightforward;
sending in (&) value(s) for a single-value non-time-valid field, amulti-value non-time-valid field
or amulti-value time-valid fields always resultsin afull replacement of all the existing values.

Single-value time-valid fields have slightly different behavior; sending in a new value for such
afield will delete any values with alater start date, will cut off any overlapping value with an
earlier start date, but will not touch any existing value that is end-dated before the start date of the
new value.

The following pseudo XML reflects the structure of a single-value time-valid freefield

<dynami cFi el ds>
<dynami cFi el d
name="occupati on"
>
<val ue
st art Dat e="2010- 05- 01"
endDat e="2012- 09- 30"
>Baker </ val ue>

Suppose that, before the request is processed, the following values exist for the "occupation”

field:
Occupation
Value Start End
Butcher 2005-01-01 2009-12-31
Courier 2010-01-01 2011-05-31
Shopkeeper 2011-06-01 na

The result of the update request would be:

Occupation

Value Start End

Butcher 2005-01-01 2009-12-31
Courier 2010-01-01 2010-04-30
Baker 2010-05-01 2012-09-30

The "Shopkeeper" value is removed because it started after the "Baker" value in the update
request. The "Courier" valueis cut off one day prior to the "Baker" value to make sure that there
isno overlap in time. The "Butcher" value remains untouched.

For time-valid dynamic fields, the startDate attribute in the <value> element isrequired; the
XML schema definition does not enforce this because the same element is also used for non-
time-valid fields.

The value of adynamic free field can be a date, number or character string. Since the schema has
no knowledge of the configuration of the field, the content of the <value> element is validated

by the integration point logic. Date values must be sent in according to the xsd:date format,

i.e, YYYY-MM-DD. The decimal character for number values must be accordance with the
installation settings. If an integration point fails to parse a dynamic field value as a date, the error
message GEN-PROC-001 (Value provided is not of type Date) is generated. If an integration
point fails to parse adynamic field value as a number, the error message GEN-PROC-002 (Value
provided is not of type Number) is generated.

OHI Components - Common Features Guide 27

ORACLE’

The schema definition does not except empty <value> elements. In order to sent in an update
that clears all values for a particular dynamic field, the update request should include a
<dynamicField> element without a <value> element, as reflected in the following pseudo code:

<dynani cFi el ds>
<dynani cFi el d
name="occupation"/>

Thefollowing is an example for the update of a single-value non-time-valid dynamic field with
usage name "comment":

<dynami cFi el ds>
<dynami cField
name="coment "
>
<val ue>Need to verify spelling of surnane</val ue>
</ dynani cFi el d>

3.2.2 Code Values

Update requests for code dynamic fields are handled similar to those for free fields, with the
exception of multi-valued code fields. The reason is that a code always has key field; in other
words, it is possible to pinpoint the exact code that you want to update, allowing a more subtle
update feature.

Sending in anew value for asingle-value non-time-valid code field results in the replacement of
the old value with the new. Sending in a new value for a single-value time-valid code field will
delete any values with alater start date, will cut off any overlapping value with an earlier start
date, but will not touch any existing value that is end-dated before the start date of the new value.

Sending in (a) value(s) for a multi-valued non-time-valid code field can only ever result in the
addition of anew code value to the field. This happens when the update includes a code value
that is not among the existing values. Existing values (regardless of whether they are included in
the update) are left untouched.

Sending in (8) value(s) for multi-valued time-valid will add new code valuesif the valueis not
among the existing code values for that field. In case the same code is among the existing values,
then the values (for the same code) with a later start date are deleted, the values for the same code
with an overlap and an earlier start date are cut off. Code values that are not in the update request
are |eft untouched.

The following pseudo XML reflects the structure of asingle-value time-valid code field:

<dynami cFi el d
nane="pri mar yDi agnosi s"
>
<val ue
st art Dat e="2010- 05- 23"
f1 exCodeDef i ni ti onCode="1CD09_V_DI AGNCSES"
>\V/51
</ val ue>
</ dynami cFi el d>

The flexCodeDefinitionCode attribute is used to disambiguate between code definitions. This
isafairly exceptional situation, sinceit is unusual for different code systems (used in the same
context) to have overlapping codes. For example, suppose the field refers to adiagnosis code and
the value is V51. Since both the ICD09 and the ICD10 code systems know a diagnosis code V51,
the <value> element needs to specify which of the two systems is the intended one.

The following XML shows an example update for a single-value time-valid code field with
consecutive valuesin time:

<dynani cFi el d
nane="occupati on"
>
<val ue
start Dat e="2005- 01- 01"

OHI Components - Common Features Guide 28

ORACLE’

endDat e="2007- 12- 31"
>NURSE</ val ue>
<val ue
st art Dat e="2008-01- 01"
>GP</ val ue>
</ dynami cFi el d>

3.2.3 Dynamic Records Values

Many of the entities that can be sent in through an integration point can be extended with
dynamic fields and / or dynamic records. The values for these records and fields can be

set through the integration points as well. Dynamic record values are set by using the
<dynamicRecordTables> element. The following pseudo XML snippets illustrate the structure of
this element.

<dynam cRecor dTabl es>
<dynanmi cRecor dTabl e
name
>
<row
startDate
endDat e
i ndDel et ed

<col unm

nane

f1 exCodeDefi ni ti onCode
/>

val ue
</ col um>

The name in the <dynamicRecordTable> element maps on to the dynamic record usage name.
Each <row> represents a dynamic record value. The startDate and endDate are used in case the
dynamic record usage is set up to be time valid.

The indicator indDeleted of arow can be used to delete specific dynamic records. Thisisonly
possible for dynamic record definitions where a particular column is set up to be 'key'. The
dynamic record to delete is then determined by matching the key column value in the request to
the key column values present in the database; any dynamic record with the same key value (and
the same parent data element) will be deleted. If the dynamic record definition does not specify a
key column, indDeleted cannot be used (if sent in anyway it will be disregarded).

Each <column> element sets a value in a single dynamic record. The name attribute maps on to
the dynamic record field usage code. The field usage can refer to either afield (such asadate or a
number) or a code definition (such as a diagnosis or a procedure). If it refers to a code definition,
the <column> value maps on to the key field of the code definition. The schema definition does
not alow <column> elements without a value; if acolumn within arecord should remain blank,
no <column> element for that column should be included.

All integration points that accept dynamic record tables include a de-duplication feature. For
each <row> element, the application checksto see if anidentical <row> exists in the message;

if it does, then the duplicate is removed. If the dynamic record definition specifies akey field,
then de-duplication is based on the key field value alone. For time valid dynamic records, de-
duplication is based on the combination of the key field and the start date. If no key field is
specified, a<row> is considered a duplicate when all field valuesin the record are the same asin
another record.

The following table describes the update behavior of dynamic records through integration points.
The assumption is that one or more dynamic record values are aready present in the database
when the request is processed. The behavior differs based on whether the dynamic record usage
allows for multiple values, time valid records and/or has a functional key field.

Specifying a <dynamicRecordTable> element without any <row> element will clear all dynamic
records for that particular usage. In case the request does include (@) <row> element(s) then the
following logic applies:

‘Multi Time Key ‘Update behavior ‘

OHI Components - Common Features Guide 29

ORACLE’

Replace the existing
record with the new

Replace the existing
record with the new

Replace all existing
records with the new
record(s)

Existing records with a
key value that matches
the key of arecord in the
request are replaced.
Existing records with
akey value that is not

in the request remain
untouched.

Existing records with the
same or later start date
are removed

The existing overlapping
record with an earlier
start date is cut off

All other existing records
remain untouched

Existing records with the
same or later start date
are removed

The existing overlapping
record with an earlier
start date is cut off

All other existing records
remain untouched

The earliest start date of
the records in the request
message is considered

to be the as-of-date from
which point onwards
only the records included
in the request message
arevalid. Existing
records that overlap in
time are ended or deleted
automatically:

e Exidting records
that start before
and end on or
later than the as-
of-date, are ended
one day prior to
the as-of-date.

» Existing records
that start on or
later than the
as-of-date are
deleted.

All other existing records
remain untouched

OHI Components - Common Features Guide

30

ORACLE’

Y Y Existing records with the
same key value and with
the same or later start
date are removed

The existing overlapping
record with the same key
value and with an earlier
start date is cut off

All other existing records
remain untouched

3.3 File Based Integration

In the following cases, data can be loaded into OHI Claims using files (bulk or batch processing):

Diagnoses

Procedures

Product Definitions
Consumption Batch Import
Fee Schedules

Provider Pricing Clauses

3.3.1 File Import Batch Processing Request

Bat

ch processing of the contents of afile starts with placing the file that isto be processed

ina'input file directory' and by subsequently informing OHI Claimsthat afileisready for
processing. The latter is done using the File Import Web Service for which the WSDL istypically
available at the following address:

http:// machi ne. domai n: port/ ohi - web- servi ces/ Fi | el nport Servi ce/
filelnport.wsdl

The filelmportRequest method of the File Import Web Service takes a message that adheres to the
Filelmport.xsd specification. A sample message looks like this:

<fil el nport Request xm ns="http://healthinsurance. oracle.conf ws/
fileimport/v3">
<fil ePat h>/ di agnoses/ 2009/ di agnosesCodesCct . xm </ fi | ePat h>
<i nport Process>di agnosesl nport </i nport Process>
<r esponseFi | ePat h>/ di agnosesResponses/ di agnosesCodesCct . xm </
responsekFi | ePat h>
<successFi | ePat h>/ successDi agnosesResponses/
di agnosesCodesCct . xnl </ successFi | ePat h>
<failureFil ePat h>/fail ureD agnosesResponses/
di agnosesCodesCct . xm </ f ai | ur eFi | ePat h>
</fil el nportRequest >

Explanation of the elementsin the message:

The required element filePath specifies the relative path to the file that needs to be processed.
It will be prepended with the value of system property ohi.ws.fileimport.filesrootdirectory.

The required element importProcess identifies the process to be used for importing the data.
If an invalid process name is used then the system reports error GEN-FILE-013 in thefile
import response message. The following import processes are supported:

e diagnoses

e procedures

e productDefinition

¢ writeConsumptionBatchRequest

OHI Components - Common Features Guide 31

ORACLE’

« feeScheduleBatchRequest

e Therequired responseFilePath element specifies the relative path to aresponse file that is
generated by OHI Claims as aresult of processing the datain the file that is to be processed.
It will be prepended with the value of system property ohi.ws.fileimport.filesrootdirectory.

e Theoptional successFilePath element specifies the relative path to which the input file
that was processed will be moved by OHI Claims after successfully processing the data
in the input file. The relative path will be prepended with the value of system property
ohi.ws.fileimport.filesrootdirectory. If the successFilePath element is not specified, OHI
Next does not move the input file after its contents were successfully processed.

e Theoptional failureFilePath element specifies the relative path to which the input file
that was processed is moved by OHI Claims after unsuccessfully processing the data
in theinput file. The relative path will be prepended with the value of system property
ohi.ws.fileimport.filesrootdirectory. If the failureFilePath element is not specified, OHI
Claims does not move the input file after its contents were unsuccessfully processed.

In case given directories are not available, the system will attempt to create these. A fileimport
job will not be started when the responseFilePath did not exist and could not be created; the
response message will indicate afailure. When either a successFilePath or failureFilePath is
specified and these did not exist or could not be created, the file import job will not be started
either. Again, the response message will indicate the failure.

As soon as the message is received by OHI Claims, it will be queued for processing. File import
messages are processed in the order of delivery.

3.3.1.1 Allowed charactersfor File Paths

For security reasons, not all characters that can normally be used in file names are allowed.
Characters that are allowed in afile name are:

o platform-specific file separator, i.e. /" on Unix and "\" for Windows platforms
e aphanumeric characters. a-z, A-2Z,0-9

* spaces

e dots

¢ hyphens and underscores

If any other character is detected, a GEN-FILE-009 error is returned and the File Import process
fails.

If the input file cannot be detected or is not readable, a GEN-FILE-004 error is returned and the
File Import process fails.

3.3.2 Response File and Process Compl etion Notification

With batch processing, there is one response per batch that is submitted even though a batch
request message may in effect consists of multiple (main-level) itemsthat are relatively
independent of each other. Each response message indicates how many (main-level) items were
successfully processed and contains task messages for the individual (main-level) items that have
them. Batch response messages are stored in afile and referenced from a response notification

message.

Asaresult of File Import batch processing, OHI Claims creates an XML response file containing
the results of the import process. When the import process completes and the response

fileis generated, OHI Claims delivers a filelmportResponse message that adheresto the
FilelmportResponse.xsd specification. A sample message |ooks like this:

<fil el mport Response xm ns="http://healthinsurance. oracle.con ws/
fileinmport/v3">

<resul t>S</result>
</fil el nmport Response>

OHI Components - Common Features Guide 32

ORACLE’

The result element specifies the result of processing the input file. Its value can be either S (for
success) or F (for failure).

The system uses WS-Addressing properties to determine the Web Service endpoint to which
the response message should be delivered and how it relates or correlatesto the initial request
message. OHI Claims supports WS-Addressing version 1.0 (May 2006). In accordance with
that standard, the response message is delivered to the Web Service endpoint that is identified
by the ReplyTo address property in theinitial SOAP request message. The RelatesTo property
is populated with the value of the Messagel D that was specified in the initial SOAP request

message.

The Web Service for delivering the process completion natification is not delivered as
part of OHI Claims.

An import fails when either:

¢ Anexception occurred during processing of the contents of afile
e Theinput file could not be moved or an exception occurred when moving the file

3.3.3 Interface Task Log

The results of the batch process are maintained in a Task Message Log. Thislog can be accessed
through alook-up page. Accessto data for a certain File Import batch job are accessible by
process name or through the Messagel D. The response file is created from the information in the
Task Message Log.

% OHI Claims does not clean the Task Message Log automatically.

3.4 Service Based Integration

Next to File Based Integration (page 31), OHI Components applications support service
based integration using the following messaging patterns:

e OHI Components Web Services
e Synchronous message processing (request-response): standard two-way message
exchange where a response message immediately follows the inbound request (using the
same socket for communication).

e Asynchronous message processing: an inbound request is not immediately processed;
the response message is delivered after processing to the endpoint address specified by
the client at the time of sending the request.

¢ OHI Components as Client (calling external services)

e Synchronous Message Processing (request-response): similar to inbound requests,

OHI Components applications expect the response to immediately follow its outbound
request (using the same socket for communication).

e Asynchronous message processing: an outbound request will not be processed
immediately; the response message should be delivered after processing to the endpoint
address that is specified by OHI Components applications at the time of sending the
request.

OHI Components - Common Features Guide 33

ORACLE’

3.4.1 OHI Components Web Services

3.4.1.1 Synchronous M essage Processing

If arequest isreceived and the ohi.ws.<integration_point>.request.validate property for the
specific Integration Point is set to true, the message is validated to check if it adheresto the XSD
specification. If the request is not valid, a SOAP fault will be returned and the message is not
processed. The validity check isnot performed if the ohi.ws.<integration_point>.request.validate
property is set to false.

A synchronous request is processed immediately. The result of processing the request message is
returned to the client immediately after processing. The format of the response message adheres
to the message specification that is dictated by the WSDL specification of the web service.

As the response message contains details of the results of processing the request, the Task
Message Log is not written to in case of synchronous message processing.

Examples of synchronous web services are the Relation integration point and the Provider
integration point.

3.4.1.2 Asynchronous M essage Processing

Also in case of an asynchronous request, the message is validated to check if it adheresto the
XSD specification. If not, a SOAP fault will be returned immediately. The messageis not
processed.

Valid requests are queued and will be processed in the order in which these were queued as soon
as system resources are available.
Similar to File Based Integration (page 31), WS-Addressing is used to determine:

* Towhich endpoint URI the response message should be delivered. Thisis determined by the
client and passed as the WS-Addressing replyTo address in the request message.

¢ How therequest and response are correlated. The response message contains the WS-
Addressing relatesTo identifier that the client program can use to correlate the response with
the original request. The relatesTo attribute holds the client-generated messageld value that
was passed in the request.

Passing avalid replyTo address URI and a messageld that is unique for the specific IPisthe
responsibility of the calling system.

In case of asynchronous message processing, result messages are written to the Task Message
Log. These are passed in the response message and may also be retrieved using the messageld
value.

An example of an asynchronous web service is the Claimsln integration point.

3.4.2 OHI Components as Web Service Client (outbound requests)

For external SOAP Web Servicesthat are called from OHI Components applications the
contracts are specified by Oracle. In order for the system to successfully connect to an external
service, the contract must be implemented and the Web Service must be available.

3.4.2.1 Synchronous M essage Processing

OHI Components applications execute synchronous calls to external services (outbound
requests). The endpoint for the Web Servicesis specified as property in the application's
propertiesfile. The format of an endpoint property is ohi.<integration_point>.endpoint.request.
For a synchronous request OHI Components applications expect an immediate response.

Other properties relevant for synchronous outbound requests are the following:

e ohi.ws.client.connectiontimeout: the timeout period that OHI Components applications use
to establish a connection to an external service. It is specified in milliseconds; avalue of 0

OHI Components - Common Features Guide 34

ORACLE’

means hever timeout, in that case OHI Components applications will wait (indefinitely) until
the connection is established.

For example, a value of 6000 means that OHI Components applications will wait for 6000
milliseconds to establish a connection. If a connection is not established before that period
expires, OHI Components applications will flag the service as being unavailable. The task
for which the request needed to be send ends in an error state and can be retried / recovered
from the "View Technical Errors" screen.

e ohi.ws.client.readtimeout: once a connection is established and the request is sent, this
property specifies the timeout period OHI Components applications will wait for the server
to respond to the request. It is specified in milliseconds; avalue of 0 means never timeout, in
that case OHI Components applications will wait (indefinitely) until aresponseis received.
For example, avaue of 6000 means that OHI Components applications will wait for a
response for 6000 milliseconds after the connection was established. If aresponseis not
received before that period expires, OHI Components applications will flag the service as
being unavailable. The task for which the request needed to be send ends in an error state and
can be retried / recovered from the "View Technical Errors' screen.

e ohi.ws.client.retrytimeout: OHI Components applications keep track of the state of external
web services. In case arequest to an external service fails (either the connection times out or
the response is not received before the readtimeout expires) OHI Components applications
register the service as being unavailable. OHI Components applications will not attempt
to send other requests to the same service within the specified retrytimeout time frame
(measured from the moment the service failed for the first time).

If aserviceisregistered as being unavailable,OHI Components applications send a
notification to inform a system administrator so that appropriate action can be taken. Note: if
aserviceisnot available for along time and the service is used with a high frequency, alow
value for this property effectively means that OHI Components applications will send many
notifications.

A value of 0 means that OHI Components applications attempt to send each request.

If the external serviceis not available, that means that the time that is set for the
ohi.ws.client.connectiontimeout property islost for each attempt. On the other hand, if the
value for this property islarge and the volume of requests is high then many tasks will end
up in an error state (and have to beretried / recovered from the "View Technical Errors’
screen).

An example of a synchronous outbound web service is the Claim Event integration point.

3.4.2.2 Asynchronous M essage Processing

OHI Components applications can a so execute asynchronous callsto external services (outbound
requests). Asisthe case for synchronous services, the endpoint for an asynchronous external

Web Servicesis specified as property in the application's properties file. The format of an
endpoint property is ohi.<integration_point>.endpoint.request.

In accordance with the WS-Addressing standard, for an asynchronous request OHI Components
applications expect the external system to deliver the response to the OHI Components
application endpoint for which the URL is given in the request using the same messagel d.

For asynchronous requests, the ohi.ws.client.connectiontimeout and ohi.ws.client.retrytimeout
properties apply.

|

3.5 Interface Messages L og

3.5.1 Result Messages

Result messages refer to errors, warnings, or informational messages that result from batch,
asynchronous and synchronous single message processing. Result messages are categorized as
internal or external and are written to the Interface Messages L og (see below). The message code
and text of external result messages may be included in response messages.

OHI Components - Common Features Guide 35

ORACLE’

Each result message corresponds to a message definition that specifies the standard message text
and possibly substitution parameters. Result messages for batch processes may be at batch level
(for messages that do not apply to a specific main-level request message element) or at main-
level element level (in which case amain-level element code/ id isincluded as a substitution
parameter so that messages can be matched to amain-level element). Likewise, messages that
are specific to an item of alist are expected to include code/ id as a substitution parameter so that
messages can be matched to the item that they relate to.

Result message definitions include a notification indicator that indicates if, when aresult message
corresponding to the definition occurs during batch processing, afailure notification should be

sent.

Message definitions are maintained in table OHI_MESSAGES.

3.5.2 Interface Messages Log

An interface message log is maintained in the database. It is written to during batch,
(asynchronous and synchronous) single message processing and for some Ul related operations.
For each operation an interface message entry is created which may have zero, one or more
details. The structure of the interface messageslog is listed in the following sub-paragraphs.

3.5.2.1 Interface Message
Interface Messages carry the following details:

Attribute Asynchronous Single | Batch Synchronous Single
M essage M essage
Subtype ASYNC BATCH SYNC
Task Id Identifier of thesystem | n/a n/a
task that was created for
processing the request
Job Instance Id n/a Reference to the job n‘a
execution id
Correlation Id WS-Addressing WS-Addressing n/a
messageld asgivenby | messageld as given by
the client that called the | the client that called the
web service for invoking | web service for invoking
the asynchronous process | the batch process
(external identifier) (externa identifier)
Service Name IP name. Thisisthe n/a IP name. Thisisthe

same name that appears
for the servicein the
WebL ogic Console.

same name that appears
for the servicein the
WebL ogic Console.

Operation Name

IP operation name as it
appearsinthe WSDL.

Batch job name

IP operation name as it
appearsinthe WSDL.

Request Received Time

Thetime that processing
of the request started

The time that processing
of the batch request
started

The time that processing
of the request started

Request Processed Time

Thetime that processing

The time that processing

The time that processing

of the request finished of the batch request of the request finished
finished
Request Message Original request message | Original request Original request message
payload that was notification message payload that was
received (containing link to file received
that contains the actual
request message) that
was received.
Response Message Response messagethat | Response notification Response message that
was sent. message (containing link | was sent.

OHI Components - Common Features Guide

to file that contains the
actual response message)
that was sent.

36

ORACLE’

Result Code 'F if message not 'F if message not 'F' to indicate that
processed successfully, | processed successfully, | messageis not
'S' if processed 'S'if processed processed successfully.
successfully. successfully. Synchronous messages
that were processed
successfully are not
logged.

3.5.2.2 Interface M essage Details

Zero, one or more interface message details may be logged for an interface message. The
structure of the interface message detailsis listed in the following table:

Attribute Description
Interface Message Id Reference to Interface Message
Element Id From message elementld attribute (only if result

message relates to a main-level element in abatch
file - otherwise n/a)

Message Code Code of the message

Message Text Descriptive text of the message with values
substituted for the placeholders

Message Detail Additional 'technical’ detail (e.g. stack trace).
Optional.

Processing of amessage failed if amessage code islogged that is classified as Fatal.

Note that in case of synchronous single messages only failures are logged. This is done to make
message processing more efficient. The idea of not logging successfully processed messagesis
that the absence of afailure implies success. If processing the request was successful, the audit
columns for the entity reflect the change.

3.5.3 Interface Messages Log Ul page

To track message processing read-only Ul pages are provided:

« Anoverview page that shows two sections with aggregated information, one for service
messages and one for batch messages.

e Two pages that provide message details service and batch processes respectively.

The overview page allows filtering by date range; by default it will query results for the last day.
The numbers are aggregated by service name, operation name and subtype. From the overview
pageit is possible to click through to a page that shows details for all requests of the selected

IP or Batch process. The latter page also provides access to the request and response message
payloads.

Messages resulting from Ul operations are stored in the interface message log but are not visible
through the interface messages log Ul pages. Instead these are shown in specific Ul pages.

I
3.6 Data Set Operations Integration Point

Thisintegration point allows the user to generate the payload for a particular data set and or/and
start the import for a data set. The purpose of this integration point isto allow the coordination of
data sets between application environments without having to access the application screens.

This section refers to the environment that 1oads the data set as the 'target' environment. The
environment on which the data set is generated is referred to as the 'source’ environment.

Thisintegration point supports the handling of data sets that belong to the definitions
CLAIMS CONFIGURATION, CLAIMS_PROVIDERS, CLAIMS_PROCEDURES and
CLAIMS_DIAGNOSES.

This integration points consists of six operations:

OHI Components - Common Features Guide 37

ORACLE’

e Stop Dequeue

e Start Dequeue

e Build Data Set

* SavetoFile

e Import From File

e Import From Environment

3.6.1 Operation Requests

3.6.1.1 Stop Dequeue

This request stops claims from entering the claims flow. Note that claims that are already in the
flow continue to be processed.

<st opDequeue/ >

3.6.1.2 Start Dequeue
This request tells the application to accept new claims for processing.

<st art Deqeueue>

3.6.1.3 Build Data Set

Thisrequest is sent to the source environment. It creates (or overwrites) the XML payload for a
data set.

<bui | dDat aSet
dat aSet Def i ni ti onCode
dat aSet Code
i ncl usi onDat e

/>

The application sends back aweb service response either when the build fails or when the
payload generation is complete.

<bui | dDat aSet Response>
<resul t Messages
result
>
<resul t Message
code
> nmessage text

The following error messages can be returned in the web service response:

Code Sev M essage

OHI-IP-DATA-001 Fatal Unknown combination of data
set code { code} and data set
definition code { code}

GEN-MIGR-008 Fatal Itisnot possible to start a new
build while another build or
import isin progress

GEN-MIGR-010 Fatal Itisnot possible to start a build
with empty data set

3.6.1.4 Saveto File
Thisregquest is sent to the source environment. It saves the data set to the specified file path.

<saveToFil e

OHI Components - Common Features Guide 38

ORACLE’

dat aSet Code
dat aSet Def i ni ti onCode
filePath

/>

The application sends back the following response:

<saveToFi | eResponse>
<resul t Messages
resul t
>
<resul t Message
code
> message text

Code Sev M essage

GEN-FILE-001 Fatal Directory does not exist or is not
accessible: {directory}

OHI-IP-DATA-001 Fatal Unknown combination of data

set code { code} and data set
definition code { code}

OHI-IP-DATA-003 Fatal This data set has not been built
yet.

3.6.1.5Import From File

Thisrequest is sent to the target environment. It starts an import with the file's content as the
payload.

<inmportFronFile
filePath
dat aSet Def i ni ti onCode
responseFi | ePat h

/>

The application sends back a response either when the import fails or when the import is
complete. The web service response only contains messages in case the input file cannot be read
or the response file not be written to.

<i mpor t Response>
<resul t Messages
result
>
<resul t Message
code
> nmessage text

The following error messages can be returned in the web service response. These are messages
that prevent the import from happening.

Code Sev M essage

GEN-FILE-001 Fatal Directory does not exist or is not
accessible: {directory}

GEN-FILE-004 Fatal Input file path does not exist
{inputFilePath}

GEN-FILE-009 Fatal File/ Directory contains non
permitted characters

GEN-MIGR-007 Fatal Import file must have a.zip
extension

GEN-MIGR-009 Fatal Itisnot possible to start a new
import while another build or
import isin progress

OHI Components - Common Features Guide 39

ORACLE’

OHI-IP-DATA-004 Fatal Unknown data set definition code
{code}

The response file contains the messages that relate to the imported content.

3.6.1.6 Import From Environment

Thisrequest is sent to the target environment. It starts the retrieval of the data set from the source
environment and starts the import on the target environment.

<i nport FronEnvi r onnment
sour ceEnvi ronment
dat aSet Def i ni ti onCode
dat aSet Code
responseFi | ePat h

/>

The sourceEnvironment attribute should contain the SID of the source environment database

The matching response only relays messages of which the cause prevents the import from
happening. Error messages that relate to specific itemsin the payload end up in the responsefile.

<i nport Response>
<resul t Messages
resul t
>
<resul t Message
code
> nmessage text

The following error messages can be returned in the web service response.

Code Sev M essage

GEN-FILE-001 Fatal Directory does not exist or is not
accessible: {directory}

GEN-FILE-009 Fatal File/ Directory contains non
permitted characters

GEN-MIGR-009 Fatal It is not possible to start a new

import while another build or
import isin progress

OHI-IP-DATA-001 Fatal Unknown combination of data
set code { code} and data set
definition code { code}

OHI-IP-DATA-002 Fatal Unknown source environment
{'sourceEnvironment}

The response file contains the messages that relate to the imported content.

3.6.2 Response File

The response file contains the exact same messages as displayed in the pop-up in page FN0040
Inbound Data Sets - Batch process message details.

<i mpor t ResponseFi | e>
<resul t Messages
result
>
<resul t Message
code
> nmessage text

Each data set definition has a specific set of error messages that can occur. Typically these
messages indicate there is an incompatibility between the itemsin the payload and the items that
already exist on the target environment.

OHI Components - Common Features Guide 40

ORACLE’

For example, the claims configuration data set can return the following messages:

Code Sev M essage
CLA-MIGR-001 Info Disabled fee scheduleline

({fee schedule code}, {line
procedures}, {line start date})

CLA-MIGR-002 Info Disabled product benefit
specification ({ product code},
{benefit specification code},

{start date})

GEN-MIGR-001 Fatal Cannot find { entity} with key
{code or usage name} used by
{ entity, key}

GEN-MIGR-002 Fatal Cannot find { entity} with Code

{code} and Flex Code Definition
Code { definition code} used by

{entity, key}
GEN-MIGR-003 Fatal Cannot find OhiTable with Name
{name} used by {entity, key}
GEN-MIGR-004 Fatal Cannot find Signature with

Name { hame} and Subtype
{'subtype} used by {entity, key}

GEN-MIGR-005 Fatal Cannot find usage for dynamic
field or record { usage name} on
{table name} used by {entity,

key}

GEN-MIGR-006 Fatal The dynamic field usage
({name}, {table name}) is not
compatible with the existing
configuration

|
3.7 Result M essages

3.7.1 Indicating Success or Failure

In the responses of Integration Points, the common element <resultM essages> isincluded to
indicate whether or not the request message was processed successfully. This element has an
attribute called 'result' which can be either 'S’ to indicate success or 'F to indicate failure.

For example, an Integration Point's response message to a successfully processed request
message contains:

<resul t Messages result="S/>

This element isincluded in the root of the Integration Point's response element. It may

be included multiple times, if the request message contained multiple ‘transaction units.
The response message may then (e.g.) indicate that some transaction units were processed
successfully while processing of others failed.

3.7.2 Result Messages

Inside the element <resultM essages> (described above) there may be zero, one or more result
messages. The purpose of these messages is to clarify why a request message was not processed
successfully. The message text contains the message text in which the substitution parameters
have been set.

For example, the Claims In Integration Point's response message to a request message which
failed to process successfully could contain :

<resul t Messages result="F >
<resul t Message code=' CLA-1P-CLAI-010' >

OHI Components - Common Features Guide 41

ORACLE’

CLA-1P-CLAI -010: The specified product code ABC i s unknown
</resul t Message>
</resul t Messages>

Result messages are common or specific:

e Integration Point Specific messages can only occur in the response of a specific Integration
Point. Such messages are described in the description of the concerned Integration Point. The
example above shows a result message specific to the Claims In Integration Point.

e Messages common acr 0ss | ntegration Points can occur in the responses of many
Integration Points. These messages relate to common functionality, like the use of dynamic
fields. These message are described below.

M essages common across I ntegration Points:

Code Severity | Message
GEN-ACRE-001 Fatal Accessrestriction code { code} is unknown. Request cannot be processed

GEN-TRAS-001 Fatal A reference may only be provided in combination with a transaction
source

GEN-TRAS-002 Fatal Transaction source code { code} is unknown
GEN-CURR-001 | Fatal Currency code { code} is unknown

GEN-DYNA-001 | Fatal The dynamic field: { dynamicFieldUsageName} should have unique
values. Thereis already arecord with value: {value}

GEN-DYNA-002 | Fatal {dynamicFieldUsageName}: Thereis already avalue present in this
period of time ({ startDate} - { endDate})

GEN-DYNA-003 | Fata Cannot insert same value for the flex code in case the dynamic field is
multivalue

GEN-DYNA-004 | Fata Dynamic field { dynamicFieldUsageName} is not time valid. Request
cannot be processed

GEN-DYNA-005 | Fatal Dynamic field { dynamicFieldUsageName} may have only one single
value. Request cannot be processed

GEN-DYNA-006 | Fatal Dynamic field flex code definition code { code} is unknown. Request
cannot be processed

GEN-DYNA-007 |Fata Theflex code { code} is unknown to dynamic field
{ dynamicFieldUsageName} . Request cannot be processed

GEN-DYNA-008 | Fatal Dynamic field name { dynamic field usage name} is unknown. Request
cannot be processed

GEN-DYNA-010 |Fatal {dynamicFieldUsageName} should have avalue and a{ startDate}

GEN-DYNA-011 | Fatal {dynamicFieldUsageName} value { value} does not belong to flex code
definition { code}

GEN-DYNA-012 | Fata { dynamicFieldUsageName} : the same value {value} is present in another
period ({ startDate} - { endDate})

GEN-DYNA-013 | Fata Only one value allowed for { dynamicFieldUsageName}
GEN-DYNA-015 | Fatal The field { dynamicFieldUsageName} is not allowed to be empty

GEN-DYNA-016 | Fatal Dynamic Record Definition with type { dynamicFieldUsageName} could
not be found

GEN-DYNA-017 |Fata Dynamic record definition { dynamicFieldUsageName} does not define
field { flexCodeFieldUsageCode}

GEN-DYNA-018 | Fatal Usage { dynamicFieldUsageName} can only have arecord when the
condition defined evaluates to true

GEN-DYNA-019 | Fata Usage { dynamicFieldUsageName} should have at least one record

GEN-DYNA-020 |Fata Key field { flexCodeFiel dUsageCode} should have unique value for
Dynamic record { dynamicFieldUsageName}

OHI Components - Common Features Guide 42

ORACLE’

GEN-DYNA-021 | Fatal Dynamic Records should specify the value for key field. Dynamic
Record { dynamicFieldUsageName} does not specify value for key
{flexCodeFieldUsageCode}

GEN-DYNA-022 | Fata Dynamic record { dynamicFieldUsageName} is not time valid. Request
cannot be processed

GEN-PROC-001 Fatal Value provided is not of type Date
GEN-PROC-002 Fatal Value provided is not of type Number

Besides these messages, business rule messages may also occur in the responses of Integration
Points. Business rule messages are raised in the validation layer of OHI Components
applications and are common to both the User Interface Pages and the Integration Points. For
example, business rule GEN-TMVL-001: "The start date should lie before the end date for

{ dynamicFieldUsageName} ".

Lastly, technical error messages may be returned through the responses of Integration Points.
For example, database message GEN-ORA-01400: "DESCR" column is mandatory for table
"PRI_FEE_SCHEDULES".

I
3.8 Integration Testing

Testing an application in a Services based environment requires the services to be available
during certain tests. These services can be provided by real systems, or by simulation. A system
that simulates an external system isreferred to as atest double or mock service.

Before the OHI Claims flow can be tested, a certain amount of datawill need to be availablein
OHI Claims. In this section, these are categorized as Prerequisite services. The servicesthat are
required during Flow testing are categorized as Operational services.

3.8.1 Environment for Prerequisite Services

The diagram below shows the services that can be tested individually. They are not necessarily
connected to the Claims flow.

Load Counters Counter - - L oadFil
Load File

Diagnoses

OHI Back Office
Claims

Provids

D[

Procedures

Load Users Provisio

Load Autharizations: th ation: -

il

Async Response message

3.8.2 Environment for Operational Services

The diagram below shows the services required for testing the Claims flow.

OHI Components - Common Features Guide 43

ORACLE’

———Claim State Inferm———={
——=Claim Business Event—m={ WebService

L Claims Out——— | Message Logger
t— Claims Unpriced Out—— |

p—————Claims In——— =

Claims Generator

——=Enmoliment—— Enrollment

laim Updat > - — — ——— = —— ———— —] Test Double
OHI Back Office
Claims
————Payman! Stalus———pm Payment Status
- — ———— — — — ——— — Test Double
Morkdflow. - Workflow
R Test Double

Tayaules ™ Payables

I
3.9 Web Service Versioning

OHI Components - Common Features Guide

When customers start to integrate with OHI Components applications Web Services, thereisa
need for versioning these. Parts of a Web Service that are likely to change and for which version
control needsto be put in place are:

e The (abstract) WSDLs; these are typically fairly stable.

e The XML Schema content that describes the types for the service's message definitions;
these are more likely to change.

3.9.1 Compatibility

A new version of aWeb Service contract that continues to support client software that was
designed to work with the previous version is said to be backward-compatible. Examples of
backward-compatible changesto an XSD are;

e The addition of an optional element.
¢ Changing an existing element from being required to optional.

These have no impact on existing consumers of the service.

If acontract changesin such away that it can no longer be used by existing consumers of
the service without making changes to the consumer programs, it is an incompatible change.
Examples of incompatible changes are:

¢ Renaming or removing an existing WSDL operation.
¢ Adding anew required XML Schema element or attribute to a message definition.
¢ Renaming an optional or required XML Schema element or attribute in a message definition.

¢ Removing an optional or required XML Schema element or attribute from a message
definition.

3.9.2 Flexible Versioning Strategy

The selected versioning strategy is known in the literature as Flexible. Any incompatble change
resultsin a new version of the service contract and the contract is designed to support backwards
compatibility. Any change that breaks the existing contract resultsin a new version.

ORACLE’

For XML Schema's and WSDL s versions are identified using a major and minor version in
notation "major.minor". Conventions according to the compatibility guarantee:

¢ A minor version is expected to be backward compatible with other minor versions that are
associated with amajor version.

¢ A magjor version breaks backward compatibility.

The versioning strategy for SOAP services used by OHI Components applications can be
characterized as follows:

¢ A compatible change leads to aminor change of the version number. The namespace(s)
remain unchanged, hence supporting backward compatibility.

¢ Anincompatible change leads to a mgjor change of the version number.

e Major versionswill be identified in XML namespaces of top-most XML schemas (and later
WSDLS). Asaresult, amajor change will require applications that use the schema or web
service to be upgraded.

Version identification example:

<xsd: schema xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schema"

xm ns: dt ="http://heal t hi nsurance. oracl e. conl dat at ypes" xml ns="http://
heal t hi nsurance. oracl e. coni fil ei nport/v1l"

t ar get Nanespace="http://heal t hi nsurance. oracl e.conf fil ei nport/v1"

el enent For nDef aul t ="qual i fi ed" attributeFornDef aul t="unqualified"
versi on="1.0">

For a compatible change, only the version number will be affected whereas the namespace
declarations remain unchanged:

<xsd: schema xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schema"

xm ns: dt="http://heal t hi nsurance. oracl e. conf dat at ypes" xm ns="http://
heal t hi nsurance. oracl e. coni fil ei nport/v1l"

t ar get Nanespace="http://heal t hi nsurance. oracl e. conf fil ei nport/v1"

el enent For nDef aul t =" qual i fi ed" attri buteFornDefaul t="unqualified"
version="1.1">

An incompatible change results in changes to both the version number as well as the version
identifier in the namespaces:

<xsd: schema xm ns: xsd="htt p://ww. w3. or g/ 2001/ XM_Schema"

xm ns: dt="http://heal t hi nsurance. oracl e. conif dat at ypes" xm ns="http://
heal t hi nsurance. oracl e. conifil ei nport/v2"

t ar get Nanespace="http://heal t hi nsurance. oracl e. conf fil ei nport/v2"

el enent For nDef aul t =" qual i fi ed" attri buteFornDefaul t="unqualified"
versi on="2.0">

Note that the DataTypes schema that holds re-usable simple and complex types, does not have
aversion identifier. The typesin there are re-used often and existing types are expected to be
stable. Given the amount of re-usein all OHI SOAP Services, it isnot likely for types declared in
DataTypes.xsd to be removed.

3.9.3 Resolving Version Conflicts across Releases

Consider the following versions for the Claimimport.xsd in distinct releases of an application:

Release XSD Version
2.12.1.0.0 1.0
2.12.2.0.0 1.1

OHI Components - Common Features Guide 45

ORACLE’

That means that the Claimlmport.xsd was changed (backward compatible or minor change) from
release 2.12.1.0.0 to 2.12.2.0.0. If another minor change is required on both these versions that

could (in theory) result in the following situation:

Release XSD Version
2.12.1.0.1 1.1
212201 1.2

To reflect the change in the Claimimport.xsd in both versions of the application the minor
version indicator in either release would be incremented. The result isthat the Claimimport.xsd
inreleases 2.12.2.0.0 and 2.12.1.0.1 has the same version number; that would wrongfully indicate

that the XSDs in these versions are similar.

This (rare) versioning conflict is resolved by introducing athird indicator, referred to as revision
in notation "major.minor.revision”. Thus, the result would be:

Release XSD Version
2.12.1.0.1 1.0.1
2.12.2.0.1 1.2

OHI Components - Common Features Guide

46

ORACLE’

AHTTP API Integration Points

41HTTP API resourcesin an OHI Components application

The context root for any HTTP APl resource in an OHI Components applicationis"/api". An
overview of all HTTP API resources available in arunning system is available under "/api/doc”.

The page that is generated also provides access to RAML specifications for each resource.
RAML stands for RESTful APl Modeling Language. A RAML document is aformal
specification of an HTTP API that is readable by both humans and computers. In many cases the
RAML specification contains usage examples for the methods that are supported by the API.

I
4.2 Attribute Handling

Each integration point request message contains data values of aroot element (e.g. organization
or organization provider) that have been created or updated in a source system. Within each
message are several categories of data such as simple entity-level attributes, lists of non-time
valid details and lists of time-valid details, dynamic fields and dynamic records. This section
describes how each category of datais handled by OHI applications and aso covers guidelines
for handling differences in data categories between source systems and OHI applications.

The way that an OHI application handles requests is based on the principle that the copy of
information in the OHI application is to be kept up-to-date with the (master) information in the
system of record. It is not required that the OHI application isinformed of every update in the
system of record; only the values at the time of creating the requests are important. For example,
if aninterface periodically creates requests for all outstanding additions and updates, only the
values of source system data at the time that the interface is run, need to be sent. Whether a
record has been updated several times or once since the last interface run isirrelevant.

If an existing record is sent again and it contains the exact same data that is already stored in the
system, the existing data will not be updated. This means that the audit columns in the database
will al'so remain unchanged.

4.2.1 Single Vaue Attributes

Single value attributes are fields that can have only one single value and the value does

not have a start and end date. Single value attributes can be represented in the requests as
attributes (for example name in the organizationProvider request) or as elements (for example
parentOrganizationProvider in the organizationProvider request). When the application creates a
new record, single value attributes are handled as follows:

e Represented as attributes: if the attribute is not included in the request, then the value of the
corresponding attribute in the new record will be set to null; if the attribute isincluded in the
request, then the corresponding attribute in the new record will be set to the specified value.

¢ Represented as elements: if the element is not included in the request, then the value of the
corresponding attribute in the new record will be set to null; if the element isincluded in the
request, then the corresponding attribute in the new record will be set to the specified value.

When the application updates a record, a single value attribute is handled as follows:

¢ Represented as attributes: if the attribute is not included in the request, then the existing
value in the application remains untouched; if the attribute isincluded in the request, then the
attribute value is updated with the specified value. In order to send in an update that clears
the value, the update request should include the attribute with an empty value.

OHI Components - Common Features Guide 47

ORACLE’

¢ Represented as elements: if the element is not included in the request, then the existing value
in the application remains untouched; if the element isincluded in the request, then the
attribute value is updated with the specified value. In order to send in an update that clears
the value, the update request should include the element without any attributes and values
(empty element).

For example, consider a new organization being added in the system of record. Because the OHI
application keeps alocal copy of organization records, the system of record sends the following
request to the OHI application:

<organi zati on

code="1333"

nane="Jones Adm ni stration"

out put Language="en"

busi nessPhoneNunber ="0301111111"
/>

Since thisisthe first time that the organization with code "1333" is being sent, the OHI
application creates a new organization record (relation of subtype organization) with only code,
name, language and business phone number having values. All other attributes in the new record
in the OHI application will be null. The organization is updated in the source system; the business
phone number is changed from "0301111111" to "0301111112". The system of record sends the
following request to the OHI application:

<organi zation

code="1333"

busi nessPhoneNunber =" 0301111112"
/>

Since there is already an organization with this code, the OHI application will update the
organization record with code "1333", setting the business phone number to "0301111112". The
name and the language will not be changed or set to null.

External Interface Design Notes

If agiven type of dataisasingle value attribute in an Integration Point message definition and
atimevalid detail list in the source system, the external interface is expected to only send the
latest / current value.

If agiven type of datais asingle value attribute in an Integration Point message definition and a
non time valid detail list or otherwise not a one-to-one match in the source system, the external
interface will require (dynamic) logic needed to determine what value should be provided.

4.2.1.1 Amount and Currency

Amount and currency are two attributes that belong together, so they are always represented
together in a separate element. For example:

<aut hori zedAnpunt
anount =" 100"
currencyCode="USD"
/>

If the element is not included in the request, then the existing values for amount and currency in
the application remain untouched; if the element isincluded in the request, then the values are
updated with the specified values. In order to send in an update that clears the values, the update
request should include the element without any attributes and values (empty element).

4.2.2 Details

Details can be non time valid (i.e. each detail record does not have start and end dates) such as
provider titles. Details can also be time valid (i.e. each item of thelist has a start and an end date),
such as provider group affiliations. Both types of details are handled as follows:

When the OHI application creates new records (for an entity with a detail list):

OHI Components - Common Features Guide 48

ORACLE’

* |f thedetall list element is not included, no details are added
* If adetail list element isincluded, one detail record for each included detail item is created

When the OHI application is updating an existing record (for an entity with a detail list):

e If thelist element is not included, no changes to current details are made

« If alist element isincluded, included detail items completely replace current detail records
(in effect, all current detail records that have not been resent (i.e. for which thereis no detail
item with exactly matching values) are removed and one detail record for each included
detail item (that is not a'resend’) is created)

¢ Notethat completely replacing an existing list can have a different meaning depending
on the root element. Provider group affiliations can for example be specified for root
element organization provider or for root element provider group. If specified for an
organization provider, it means that all provider group affiliations of that provider (in al
provider groups) are replaced by the new list. If specified for a provider group, it means
that all provider group affiliations of that provider group are replaced by the new list.

e If an empty list element isincluded, all current detail records are removed.

4.2.3 Dynamic Fields and Records

This section describes the default behavior of integration points that accept dynamic field and
record values. The configuration of the relevant dynamic field usages drive how the integration
point processes a regquest with new dynamic field and record values. The driving aspects are the
usage type (field, code or record), whether the field can have multiple values and whether the
field valueistime valid.

4.2.3.1 Dynamic Fields

Dynamic field values can be created and updated through integration points. How the values are
supplied in the request messages depends on the way the dynamic fields are configured in the
application. Dynamic fields can be configured as:

¢ Single-Vaue Non-Time-Vdid
¢ Single-Vdue Time-Valid
¢ Multi-Value Non-Time-Valid
e Multi-Vaue Time-Valid

4.2.3.1.1 Single-Value Non-Time-Vaid Fields

M essage Definition

A single-value non-time-valid free field is represented as an attribute of the element it belongs

to, with the name of the attribute being the same as the corresponding dynamic field usage name.
The same appliesto asingle-value non-time-valid flex code field that is configured as aflex code
definition.

A single-value non-time-valid flex code field that is configured as a flex code set is represented
as a sub-element of the element it belongs to, with the name of the sub-element being the same
as the corresponding dynamic field usage name. The sub-element has flexCodeDefinitionCode as
attribute and the dynamic field value as text content.

Update Behavior

When the application updates a record, a single-value non-time-valid free field and asingle-value
non-time-valid flex code field that is configured as a flex code definition are handled as follows:
if the attribute is not included in the request, then the existing value in the application remains
untouched; if the attribute isincluded in the request, then the value is updated with the specified
value. In order to send in an update that clears the value, the update request should include the
attribute with an empty value.

OHI Components - Common Features Guide 49

ORACLE’

A single-value non-time-valid flex code field that is configured as aflex code set is handled as
follows when updating arecord: if the element is not included in the request, then the existing
value in the application remains untouched; if the element isincluded in the request, then the
valueis updated with the specified value. In order to send in an update that clears the value, the
update request should include the sub-element without the flexCodeDefinitionCode attribute and
the text content.

Examples

Consider the example below of an individual provider request message for the creation of a new
individual provider, where the following dynamic field usages are configured on the providers
table:

e dateOfBirth: single-value non-time-valid free field
« married: single-value non-time-valid flex code field (configured as a flex code definition)

e gpeciaizedProcedure: single-value non-time-valid flex code field (configured as a flex code
Set)

<i ndi vi dual Provi der
code="1234567890"
f 1 exCodeDefi niti onCode="US_PROVI DER'
nane="Sm t h"
naneFor mat Code=" NFDFLT"
out put LanguageCode="EN"
start Dat e="2010-01- 01"
dat eOf Bi rt h="1975- 06- 06"
married="Y"

<speci al i zedPr ocedure
f 1 exCodeDefi niti onCode="CPT_CODES"
>

33010
</ speci al i zedPr ocedur e>
</ i ndi vi dual Provi der >

In order to update the married value from Y to N and leave all other fixed field values and
dynamic field values intact, the following individual provider request message is used:

<i ndi vi dual Provi der
code="1234567890"
f 1 exCodeDefi ni ti onCode="US_PROVI DER'
marri ed="N'

>

</i ndi vi dual Provi der >

To clear the values of the dynamic fields that were created in the examples above, the following
individual provider request messageis used:

<i ndi vi dual Provi der
code="1234567890"
f 1 exCodeDefi ni ti onCode="US_PROVI DER'

>
<speci al i zedPr ocedure/ >
</'i ndi vi dual Provi der >

4.2.3.1.2 Single-Vaue Time-Valid Fields

M essage Definition

A single-valuetime-valid free field is represented as a sub-element of the element it belongs
to, with the name of the sub-element being the same as the corresponding dynamic field usage
name. The sub-element can have one or more <value> sub-elements of its own. The <value>
sub-element has startDate and endDate as attributes and the dynamic field value as text content.

OHI Components - Common Features Guide 50

ORACLE’

The same appliesto asingle-value time-valid flex code field that is configured as aflex code
definition.

A single-value time-valid flex code field that is configured as aflex code set is represented
as a sub-element of the element it belongs to, with the name of the sub-element being the
same as the corresponding dynamic field usage name. The sub-element can have one or
more <value> sub-elements of its own. The <value> sub-element has startDate, endDate and
flexCodeDefinitionCode as attributes and the dynamic field value as text content.

Update Behavior

When the application updates arecord, a single-value time-valid field is handled as follows: if the
sub-element is not included in the request, then the existing value(s) in the application remain(s)
untouched; if the sub-element isincluded in the request, then the existing value(s) is/are replaced
by the value(s) specified in the request. In order to send in an update that clears the existing
value(s), the update request should include the sub-element without any <value> sub-elements.

Examples

Consider the example below of an individual provider request message for the creation of a new
individual provider, where the following dynamic field usages are configured on the providers
table:

e contractReferences: single-value time-valid free field
* married: single-value time-valid flex code field (configured as a flex code definition)
e gpeciaizedProcedures: single-value time-valid flex code field (configured as aflex code set)

<i ndi vi dual Provi der
code="1234567890"
f 1 exCodeDefi ni ti onCode="US_PROVI DER'
nane="Sm t h"
naneFor mat Code=" NFDFLT"
out put LanguageCode="EN"
start Dat e="2010-01- 01"

<contr act Ref er ences>
<val ue
start Dat e="2010-01- 01"
endDat e="2012- 06- 31"
>
1111
</ val ue>
<val ue
start Dat e="2012-07- 01"
>
1112
</val ue>
</ contract Ref erences>
<married>
<val ue
start Dat e="2012-01- 01"
endDat e="2012- 06- 31"
>
Y
</val ue>
</married>
<speci al i zedPr ocedur es>
<val ue
fl exCodeDefi niti onCode=" CPT_CODES"
start Dat e="2010-01- 01"
endDat e="2011- 12- 31"
>
33010
</val ue>
<val ue
f | exCodeDef i ni ti onCode="1CD10_PROCEDURES"
start Dat e="2012-01- 01"
>
216127

OHI Components - Common Features Guide 51

ORACLE’

</ val ue>
</ speci al i zedPr ocedur es>
</i ndi vi dual Provi der >

In order to replace the contract references 1111 and 1112 by contract referencel113 and leave all
other fixed field values and dynamic field values intact, the following individual provider request
message is used:

<i ndi vi dual Provi der
code="1234567890"
f | exCodeDef i ni ti onCode="US_PROVI DER
>
<contract Ref erences>
<val ue
start Dat e="2010- 01- 01"
endDat e="2012- 06- 31"
>
1113
</ val ue>
</ contract Ref erences>
</i ndi vi dual Provi der >

To clear the values of the dynamic fields that were created in the examples above, the following
individual provider request message is used:

<i ndi vi dual Provi der
code="1234567890"
f 1 exCodeDefi ni ti onCode="US_PROVI DER'

<contract Ref erences/ >

<married/ >

<speci al i zedPr ocedur es/ >
</i ndi vi dual Provi der >

4.2.3.1.3 Multi-Vaue Non-Time-Valid Fields

M essage Definition

A multi-value non-time-valid free field is represented as a sub-element of the element it belongs
to, with the name of the sub-element being the same as the corresponding dynamic field usage
name. The sub-element can have one or more <value> sub-elements of its own. The <value> sub-
element has the dynamic field value as text content. The same applies to a multi-value non-time-
valid flex codefield that is configured as a flex code definition.

A multi-value non-time-valid flex code field that is configured as a flex code set is represented

as a sub-element of the element it belongs to, with the name of the sub-element being the same
as the corresponding dynamic field usage name. The sub-element can have one or more <value>
sub-elements of its own. The <value> sub-element has flexCodeDefinitionCode as attribute and
the dynamic field value as text content.

Update Behavior

When the application updates a record, a multi-value non-time-valid field is handled as follows:
if the sub-element is not included in the request, then the existing value(s) in the application
remain(s) untouched; if the sub-element isincluded in the request, then the existing value(s) is/
are replaced by the value(s) specified in the request. In order to send in an update that clears the
existing value(s), the update request should include the sub-element without any <value> sub-
elements.

Examples

Consider the example below of an individual provider request message for the creation of a new
individual provider, where the following dynamic field usages are configured on the providers
table:

e contractReferences: multi-value non-time-valid free field
¢ hobbies: multi-value non-time-valid flex code field (configured as a flex code definition)

OHI Components - Common Features Guide 52

ORACLE’

e gpecializedProcedures: multi-value non-time-valid flex code field (configured as a flex code
set)

<i ndi vi dual Provi der
code="1234567890"
f |l exCodeDefi ni ti onCode="US_PROVI DER'
name="Sm t h"
nanmeFor mat Code=" NFDFLT"
out put LanguageCode="EN'
start Dat e="2010- 01- 01"

<contract Ref erences>
<val ue>
1111
</val ue>
<val ue>
1112
</val ue>
</ contract Ref erences>
<hobbi es>
<val ue>
Soccer
</val ue>
<val ue>
Basebal
</val ue>
</ hobbi es>
<speci al i zedPr ocedur es>
<val ue
f |l exCodeDef i niti onCode=" CPT_CODES"
>
33010
</val ue>
<val ue
f 1 exCodeDefi niti onCode="1CD10_PROCEDURES"
>
216127
</val ue>
</ speci al i zedPr ocedur es>
</i ndi vi dual Provi der >

In order to replace the hobbies Soccer and Baseball by hobby Basketball and leave all other fixed
field values and dynamic field values intact, the following individual provider request messageis
used:

<i ndi vi dual Provi der
code="1234567890"
f | exCodeDef i ni ti onCode="US_PROVI DER'
>
<hobbi es>
<val ue>
Basket bal
</val ue>
</ hobbi es>
</i ndi vi dual Provi der >

To clear the values of the dynamic fields that were created in the examples above, the following
individua provider request message is used:

<i ndi vi dual Provi der
code="1234567890"
f 1 exCodeDefi niti onCode="US_PROVI DER'

<contract Ref erences/ >

<hobbi es/ >

<speci al i zedPr ocedur es/ >
</ i ndi vi dual Provi der >

OHI Components - Common Features Guide 53

ORACLE’

4.2.3.1.4 Multi-Vaue Time-Valid Fields

Multi-value time-valid fields are handled in the same manner as single-value time-valid fields.

4.2.3.2 Dynamic Records

Many of the entities that can be sent in through an integration point can be extended with

dynamic records. The values for these records can be set through the integration points as well.
How the values are supplied in the request messages depends on the way the dynamic records are
configured in the application. Dynamic records can be configured as:

¢ Single-Vaue Non-Time-Vadid
e Single-Vaue Time-Valid
e Multi-Value Non-Time-Valid
¢ Multi-Value Time-Valid

4.2.3.2.1 Single-Vaue Non-Time-Valid Records

M essage Definition

A single-value non-time-valid dynamic record is represented as a sub-element of the element it
belongs to, with the name of the sub-element being the same as the corresponding dynamic field
usage name. The sub-element has the dynamic record flex code field usages (representing the
columns of the dynamic record) that are configured as free fields, as attributes with the names of
the attributes being the same as the corresponding flex code field usage names. The same applies
to the dynamic record flex code field usages that are configured as flex code definitions.
Dynamic record flex code field usages that are configured as flex code sets are represented as
sub-elements of the sub-element described above, with the names of the sub-elements being the
same as the corresponding dynamic record flex code field usage names. The sub-elements have
flexCodeDefinitionCode as attribute and the dynamic field value as text content.

Update Behavior

When the application updates a record, a single-value non-time-valid record is handled as
follows: if the sub-element is not included in the request, then the existing value(s) in the
application remain(s) untouched; if the sub-element isincluded in the request, then the existing
value(s) is/are replaced by the value(s) specified in the request (attributes that are not in the
request are set to null). In order to send in an update that clears the existing value(s), the update
request should include the sub-element without any attributes and sub-elements.

Examples

Consider the example below of an individual provider request message for the creation of a new
individual provider, where the following dynamic field usages are configured on the providers
table:

e accreditation: single-value non-time-valid dynamic record, having the following dynamic
record flex code field usages:

e accreditationName (configured as aflex code definition)
e status (configured as a flex code definition)

e accreditationDate (configured as a free field)

e accreditedBy (configured as aflex code set)

<i ndi vi dual Provi der
code="1234567890"
f 1 exCodeDef i ni ti onCode="US_PROVI DER'
name="Sm t h"
nameFor mat Code=" NFDFLT"
out put LanguageCode="EN"
start Dat e="2010- 01- 01"

<accreditation

OHI Components - Common Features Guide 54

ORACLE’

accredi t ati onNane="Physi cal Therapy"
status="Accredited"
accreditationbDate="2011-01-01"

<accredi t edBy
f | exCodeDef i ni ti onCode="US_PROVI DER"
>

1000000000
</ accredi t edBy>
</ accreditation>
</i ndi vi dual Provi der >

In order to replace the accreditation with accreditation name Physical Therapy by an accreditation
with accreditation name Speech Therapy and leave all other valuesintact, the following
individual provider request message is used:

<i ndi vi dual Provi der

code="1234567890"

f | exCodeDef i ni ti onCode="US_PROVI DER
>

<accreditation
accredi t ati onNane="Speech Ther apy"
status="Accredited"
accreditationbDate="2011-01-01"

<accredi t edBy
f | exCodeDef i ni ti onCode="US_PROVI DER
>

1000000000
</ accredi t edBy>
</ accreditation>
</i ndi vi dual Provi der >

To clear the values of the dynamic record that was created in the examples above, the following
individual provider request message is used:

<i ndi vi dual Provi der

code="1234567890"

f 1 exCodeDefi ni ti onCode="US_PROVI DER'
>

<accreditation/>
</i ndi vi dual Provi der >

4.2.3.2.2 Single-Value Time-Valid Records

M essage Definition

A single-value time-valid dynamic record is represented as a sub-element of the element it
belongs to, with the name of the sub-element being the same as the corresponding dynamic

field usage name. The sub-element can have one or more <record> sub-elements of its own
(representing the rows of the dynamic record). The <record> sub-elements have startDate and
endDate as attributes. The dynamic record flex code field usages (representing the columns of the
dynamic record) that are configured as free fields, are represented as attributes on the <record>
sub-elements with the names of the attributes being the same as the corresponding flex code field
usage names. The same applies to the dynamic record flex code field usages that are configured
as flex code definitions.

Dynamic record flex code field usages that are configured as flex code sets are represented as
sub-elements of the <record> elements, with the names of the sub-elements being the same

as the corresponding dynamic record flex code field usage names. The sub-elements have
flexCodeDefinitionCode as attribute and the dynamic field value as text content.

Update Behavior

When the application updates a record, a single-value time-valid record is handled as follows:
if the sub-element is not included in the request, then the existing value(s) in the application
remain(s) untouched; if the sub-element isincluded in the request, then the existing value(s) is/
are replaced by the value(s) specified in the request (attributes that are not in the request are set

OHI Components - Common Features Guide 55

ORACLE’

to null). In order to send in an update that clears the existing value(s), the update request should
include the sub-element without any <record> sub-elements.

Examples

Consider the example below of an individual provider request message for the creation of a new
individual provider, where the following dynamic field usages are configured on the providers
table:

e accreditations: single-value time-valid dynamic record, having the following dynamic record
flex code field usages:

« accreditationName (configured as aflex code definition)
e status (configured as a flex code definition)

e accreditationDate (configured as a free field)

* accreditedBy (configured as a flex code set)

<i ndi vi dual Provi der
code="1234567890"
f 1 exCodeDefi ni ti onCode="US_PROVI DER'
name="Sm t h"
nanmeFor mat Code=" NFDFLT"
out put LanguageCode="EN'
start Dat e="2010- 01- 01"

<accredi tations>
<record
accredi tati onNanme="Physi cal Therapy"
status="Accredited"
accredi tationbDate="2011-01-01"
start Dat e="2011-01- 01"
endDat e="2011- 06- 06"

<accredi t edBy
f |l exCodeDefi ni ti onCode="US_PROVI DER'
>
1000000000
</ accredi t edBy>
</record>
<record
accredi tati onName="Cccupati onal Therapy"
status="Accredited"
accredi tati onDat e="2011-07-07"
start Dat e="2012-01- 01"

<accredi t edBy
f | exCodeDef i niti onCode="HEALTH_ACCREDI TOR'
>
Home Heal th Accreditati on Conm ssion
</ accredi t edBy>
</record>
</ accreditations>
</i ndi vi dual Provi der >

In order to replace the accreditations with accreditation names Physical Therapy and
Occupational Therapy by an accreditation with accreditation name Speech Therapy and leave al
other values intact, the following individual provider request messageis used:

<i ndi vi dual Provi der
code="1234567890"
f | exCodeDef i ni ti onCode="US_PROVI DER'
>
<accredi tations>
<record
accredi tati onName="Speech Therapy"
status="Accredited"
accredi tationDate="2011-01-01"
start Dat e="2011-01- 01"

OHI Components - Common Features Guide 56

ORACLE’

endDat e="2011- 06- 06"
>
<accredi t edBy
f 1 exCodeDefi ni ti onCode="US_PROVI DER'
>
1000000000
</ accredi t edBy>
</record>
</ accreditations>
</i ndi vi dual Provi der >

To clear the values of the dynamic record that was created in the examples above, the following
individual provider request message is used:

<i ndi vi dual Provi der

code="1234567890"

f 1 exCodeDefi ni ti onCode="US_PROVI DER'
>

<accreditations/>
</i ndi vi dual Provi der >

4.2.3.2.3 Multi-Vaue Non-Time-Valid Records

M essage Definition

A multi-value non-time-valid dynamic record is represented as a sub-element of the element
it belongs to, with the name of the sub-element being the same as the corresponding dynamic
field usage name. The sub-element can have one or more <record> sub-elements of its own
(representing the rows of the dynamic record). The <record> sub-elements have the dynamic
record flex code field usages (representing the columns of the dynamic record) that are
configured as free fields, as attributes with the names of the attributes being the same as the
corresponding flex code field usage names. The same applies to the dynamic record flex code
field usages that are configured as flex code definitions.

Dynamic record flex code field usages that are configured as flex code sets are represented a
sub-elements of the <record> elements, with the names of the sub-elements being the same
as the corresponding dynamic record flex code field usage names. The sub-elements have
flexCodeDefinitionCode as attribute and the dynamic field value as text content.

Update Behavior

When the application updates a record, a single-value time-valid record is handled as follows:

if the sub-element is not included in the request, then the existing value(s) in the application
remain(s) untouched; if the sub-element isincluded in the request, then the existing value(s) is/
are replaced by the value(s) specified in the request (attributes that are not in the request are set
to null). In order to send in an update that clears the existing value(s), the update request should
include the sub-element without any <record> sub-elements.

Examples

Consider the example below of an individual provider request message for the creation of anew
individual provider, where the following dynamic field usages are configured on the providers
table:

e accreditations: single-value time-valid dynamic record, having the following dynamic record
flex code field usages:

e accreditationName (configured as aflex code definition)
e status (configured as aflex code definition)

* accreditedBy (configured as a flex code definition)

e accreditationDate (configured as a free field)

<i ndi vi dual Provi der
code="1234567890"
fl exCodeDefi ni ti onCode="US_PROVI DER'
nane="Sm t h"

OHI Components - Common Features Guide 57

ORACLE’

nameFor mat Code=" NFDFLT"
out put LanguageCode="EN"
start Dat e="2010- 01- 01"

<accreditations>
<record
accredi tati on="Physi cal Therapy"
status="Accredited"
accredi t edBy="Hone Health Accreditation Conm ssion"
accredi tationbDate="2011-01-01"
/>
<record
accredi tati on="CQccupati onal Therapy"
status="Accredited"
accredi t edBy="Hone Health Accreditation Conm ssion"
accreditationbDate="2011-07-07"
/>
</ accreditations>
</i ndi vi dual Provi der >

In order to replace the accreditations with accreditation names Physical Therapy and
Occupational Therapy by an accreditation with accreditation name Speech Therapy and leave al
other values intact, the following individual provider request messageis used:

<i ndi vi dual Provi der
code="1234567890"
f | exCodeDef i ni ti onCode="US_PROVI DER
name="Sm t h"
nameFor mat Code=" NFDFLT"
out put LanguageCode="EN"
start Dat e="2010-01- 01"

<accreditations>
<record
accredi tati on="Speech Therapy"
status="Accredited"
accredi t edBy="Hone Health Accreditation Conm ssion"
accreditationbDate="2011-01-01"
/>
</ accreditations>
</i ndi vi dual Provi der >

To clear the values of the dynamic record that was created in the examples above, the following
individual provider request message is used:

<i ndi vi dual Provi der

code="1234567890"

f 1 exCodeDefi ni ti onCode="US_PROVI DER'
>

<accreditations/>
</i ndi vi dual Provi der >

4.2.3.2.4 Multi-Vaue Time-Valid Records

Multi-value time-valid records are handled in the same manner as single-value time-valid
records.

4.2.4 Errors

Error messages related to attribute handling, that are common across integration points, are
specified in Response Messages (page 59).

OHI Components - Common Features Guide 58

ORACLE’

4.3 Response M essages

4.3.1 Indicating Success

OHI HTTP API services make use of HTTP status codes in the HT TP headers to indicate a
success. The following table lists these status codes:

Code M eaning Description

200 OK Request succeeded for GET calls.
May also be used for DELETE
calls that complete synchronously

201 Created Request succeeded for creation of
aresource

202 Accepted Request accepted for
asynchronous POST or DELETE
cals

204 No Content Reguest succeeded for updating or
deleting aresource

In the case of successfully creating a resource next to a 201 status code, the server returns

the Location URI. Inthe HTTP specification, it is optional whether the server sendsthe
representation of the newly created resource. In many cases, it will send afull response body as it
may contain further processing instructions for the client in the form of hypermedialinks.

In the case of successfully updating a resource, according to the HT TP specification the server
has to respond in one of the following ways:

1. Header "HTTP 200 OK", accompanied by afull response body or
2. Header "HTTP 204 No Content", without any response body.

By default, OHI systemswill send "HTTP 200 OK" and afull response body. After updating a
resource the server does not return a Location URI.

In the case of successfully deleting aresource, according to the HTTP specification the server has
to respond in one of the following ways:

1. Header "HTTP 200 OK" if the response includes an entity describing the status; OHI systems
use this option if a sub-entity was deleted to return the modified (master) entity.

2. Header "HTTP 202 Accepted” if the action has not yet been enacted; OHI systems use this
option if the entity is deleted at alater stage.

3. Header "HTTP 204 No Content” if the action has been enacted but the response does not
include an entity; OHI systems use this option if the entity was deleted successfully

Requests that GET one or more resources will have a response structure specific to the
integration point.

4.3.2Links

When responding to requests, OHI Components applications may add URI links to the response
message payload. Links have the following attributes:

e rel: description for the type of link
« type the mediatype for thelink, e.g. ‘application/xml’
« href: the actual hypermedia reference that the client may activate

OHI Components applications return relative URI links that start with the path of the RESTful
service that generated the response. It is expected that the client prepends these with the protocol

OHI Components - Common Features Guide 59

ORACLE’

identifier (e.g. HTTPS), domain, port and the OHI Components application HTTP APl context

root (i.e. "/api").
The following link types are distinguished:
Link type Description
self Reference to a specific resource, e.g. /api/activities/
{activityld}.
file Reference to afile that will be streamed to the client
when the link is activated.
messages List of messages resulting from processing a request
or activity.
first For pagination of results: for navigation to first
'page’. Only applicable if the current 'page’ is not the
first.
next For pagination of results: for navigation to next
'‘page’. Only applicableif the list contains additional
items.
prev For pagination of results: for navigation to previous
‘page’. Only applicableif the current ‘page’ is not the
first.
actiond... Denotes actions that are executed when the link is

activated. For example: 'actiong/startprocessing' to
start an activity.

4.3.3 Pagination

AnHTTP API service response to GET resource request may support pagination to handle large
data volumes if specified as arequirement for the integration point. Additional information must
be supplied along with the Integration point's URI regarding the "offset” and "limit". By default,
the Offsetissetto O and Limit is set at 50. i.eif only the URI is specified, first 50 resources will
be returned in the response along with the links "next" and "prev" as applicable.

Offset: Specifies the n" record from which the subset is desired
Limit: Specifiesthe number of e ementsto be returned

Example URI to fetch next 50 records.

<l ntegration Point URlI>?0offset=51&& i m t=50

4.3.4 Indicating Failure

AnHTTP API service response message to an unsuccessfully processed request message will
have the following structure along with appropriate HT TP status codes unlessit is explicitly
required to have more information to be part of the response of the integration point:

<resul t Messages result="F >
<resul t Message code= "'"'>
messageText
</resul t Message>
</resul t Messages>

The following table lists the HTTP status codes for indicating failure:

Code M eaning Description

400 Bad Request The request could not be
understood by the server due to
malformed syntax (e.g. when
unmarshalling of the request
failed)

OHI Components - Common Features Guide 60

ORACLE’

401 Unauthorized Request failed because the user is
not authenticated
404 Not found The server has not found anything

matching the Request URI

415 Unsupported Media Type The server is refusing to service
the request because the entity

of the request isin aformat

not supported by the requested
resource for the requested method

422 Unprocessable Entity The syntax of the request is
correct (thus a 400 (Bad Request)
status code is inappropriate) but
the server was unable to process
the contained instructions because
the data violates business rules

500 Internal Server Error Something went wrong on the
server, check server status and
logs and/or report the issue

4.3.5 Failure Result Messages

Result messages are common or specific. Inside the element <resultM essages> (described above)
there may be zero, one or more result messages.The purpose of these messagesisto clarify why
arequest message was not processed successfully. The message text contains the message text in
which the substitution parameters have been set.

For example, the Activity Integration Point's synchronous response message which failed to start
the activity process as activity code was unknown would be:

<resul t Messages result="F >
<resul t Message code=" ACT-1 P- ACTY-001' >
ACT- | P- ACTY-001: Activity code abc is unknown
</resul t Message>
</resul t Messages>

e Integration Point Specific messages can only occur in the response of a specific Integration
Point. Such messages are described in the description of the concerned Integration Point.

¢ Messages common acr oss I ntegration Points can occur in the responses of many
Integration Points. These messages relate to common functionality, like the use of dynamic
fields. These messages are described below.

M essages common across I ntegration Points:

Code Severity M essage

GEN-ACRE-001 Fatal Access restriction code { code}
is unknown. Request cannot be
processed

GEN-TRAS-001 Fatal A reference may only be provided
in combination with atransaction
source

GEN-TRAS-002 Fatal Transaction source code { code} is
unknown

GEN-CURR-001 Fatal Currency code { code} is unknown

GEN-DYNA-001 Fatal The dynamic field:

{ dynamicFieldUsageName}
should have unique values. There
isaready arecord with value:
{vaue}

OHI Components - Common Features Guide 61

ORACLE’

GEN-DYNA-002

GEN-DYNA-003

Fatal

Fatal

{dynamicFieldUsageName} :
Thereis already avalue present in
this period of time ({ startDate} -
{endDate})

Cannot insert same value for the
flex code in case the dynamic
field ismultivalue

GEN-DYNA-006

GEN-DYNA-007

Fatal

Fatal

Dynamic field flex code definition
code {code} isunknown. Request
cannot be processed

Theflex code { code} is
unknown to dynamic field

{ dynamicFieldUsageName} .
Reguest cannot be processed

GEN-DYNA-009

Fatal

{endDate} should be later than
or the same as{ startDate} for
{ dynamicFieldUsageName}

GEN-DYNA-010

GEN-DYNA-011

Fatal

Fatal

{ dynamicFieldUsageName}
should have avalueand a
{startDate}

{dynamicFieldUsageName} value
{value} does not belong to flex
code definition { code}

GEN-DYNA-012

Fatal

{dynamicFieldUsageName} : the
same value {value} is present

in another period ({ startDate} -
{endDate})

GEN-DYNA-015

Fatal

Thefield
{ dynamicFieldUsageName} is not
allowed to be empty

GEN-DYNA-018

Fatal

Usage

{ dynamicFieldUsageName}

can only have arecord when the
condition defined evaluates to true

GEN-DYNA-019

Fatal

Usage
{ dynamicFieldUsageName}
should have at |east one record

GEN-DYNA-020

Fatal

Key field
{flexCodeFieldUsageCode}
should have unique value
for Dynamic record

{ dynamicFieldUsageName}

COD-FCFU-101

Fatal

Dynamic Records should
specify the value for key
field. Dynamic Record

{ dynamicFieldUsageName}
does not specify value for key
{flexCodeFieldUsageCode}

GEN-PROC-017

Fatal

Value{value} isnot part of
domain { domain}

Besides these messages, business rule messages may a so occur in the responses of Integration
Points. Business rule messages are raised in the validation layer of the OHI application and are
common to both the User Interface Pages and the Integration Points. For example, business rule
GEN-TMVL-001: "The start date should lie before the end date for { dynamicFieldUsageName} .

Lastly, technical error messages may be returned through the responses of Integration Points.
For example, database message GEN-ORA-01400: "NAME" column is mandatory for table

"REL_PROVIDERS".
|

OHI Components - Common Features Guide

62

ORACLE’

4.4 Data File Set I ntegration Point

OHI Claims application supports file based data import. Uploading the files and processing the
file contentsis atwo step process:

1. Load thefilesusing the Data File Set Integration Point.

2. Processthefile contents by initiating the proper activity type using the Activity Integration
Point or through the UI.

The data file set integration point allows uploading of the filesin the following ways:

e Through multiple request -response based conversation mode.
e Through asingle request by creating the data file set and loading multiple datafiles.

4.4.1 Creating adatafile set with one or more files in conversation mode (multiple requests).

In this scenario the client performs the following steps:

e Create datafile set, optionally with one or more files.
e Adddatafileto the datafile set, if not already created with the data file set.
e Add file content.

4.4.1.1 Step 1: Create Data File Set
This request enables an external system to create a datafile set.

4.41.1.1 Request M essage

The create data file set request will have the following structure:

<dat aFi | eSet code=""' description="">
</ dat aFi | eSet >

4.4.1.1.2 Response M essage

The create data file set success response will have the following structure:

<dat aFi | eSet code="">
<l'i nks>
<link rel="self' type="application/xm"' href='"/datafil esets/
{datafil esetcode}'/>
</links>
</ dat aFi | eSet >

The URI received in the response could be used to perform further actions on the data file set.

4.4.1.1.3 Step 2: Create datafilesin a Data File Set.

A datafile can be created within a previously created data file set by posting a request
to the URI received in the response of "Create Data File Set request” (uri="/datafilesets/
{ datafilesetcode}).

4.4.1.1.4 Request M essage

The create file within a data file set request will have the following structure:

<dataFile

OHI Components - Common Features Guide 63

ORACLE’

code='
description='
filePath="" -- File path can be supplied for reference purposes. The
file content is uploaded through a POST operation
/>
4.4.1.1.5 Response M essage

The create file within a datafile set success response will have the following structure:

<dat aFi | eSet code="">
<li nks>
<link rel="self' type="application/xm' href='"/datafil esets/
{datafil esetcode}'/>
</1inks>
<dat aFi | es>
<dat aFi |l e code=""'>
<li nks>
<link rel="file' type='text/xm' href='"/datafil esets/
{datafil esetcode}/datafil es/{datafil ecode}/data'/>
</1inks>
</ dat aFi | e>
</ dat aFi | es>
</ dat aFi | eSet >

If the code for the data file set or datafile is omitted a system generated number will be used
instead.

4.4.1.2 Optional: Create datafile set with a datafile

Datafile can be created directly in Stepl. Thiswill create a datafile set with one datafile or
multiple datafiles. In this case the request - response xml for Stepl will be as mentioned below.

4.4.1.2.1 Request M essage

The create data file set with a data file request will have the following structure:

<dat aFi | eSet code="' description=""'>
<dat aFi | es>
<dataFil e code=""' description="" filePath=""/>

</ dat aFi | es>
</ dat aFi | eSet >

4.4.1.2.2 Response M essage
The create data file set with file success response will have the following structure:

<dat aFi | eSet code='">
<li nks>
<link rel="self' type="application/xm' href="/datafilesets/
{datafil esetcode}'/>
</1inks>
<dat aFi | es>
<dat aFi |l e code=""'>
<li nks>
<link rel="file' type='text/xm' href='"/datafilesets/
{datafil esetcode}/datafil es/{datafil ecode}/data'/>
</1inks>
</ dat aFi | e>

</ dat aFi | es>
</ dat aFi | eSet >

OHI Components - Common Features Guide 64

ORACLE’

4.4.1.3 Step 3: Add data to Data File

The payload can then be submitted to the URI which was received as the response of Step 2. i.e
'Idatafilesets/{ datafilesetcode} /datafil es/{ datafilecode} /data. The file structure is described in
the specification of the file import based integration points.

4.4.1.3.1 Response M essage

The add content to data file request's success response will have appropriate HT TP status code in
the header and the following structure:

<dat aFi | eSet code=""'>
<li nks>
<link rel =" self' type="application/xm"' href="/datafilesets/
{datafil esetcode}'/>
</links>
<dat aFi | es>
<dat aFi | e code=""'>
<li nks>
<link rel="file' href="/datafil esets/{datafil esetcode}/datafiles/
{datafil ecode}/data' />
</links>
</ dat aFi | e>
</ dat aFi | es>
</ dat aFi | eSet >

For all of the above mentioned steps, in case of failure the response will be as specified in the
standard structure under "Indicating Failure" in Response Messages'.

Example: A result message for file content that could not be added as the data file code was
unknown will have the following structure.

<resul t Messages result="F >
<resul t Message code=' DAT- | P- DAFI - 005' >
DAT- | P- DAFI - 005: Data file code abc is unknown to data file set pqr
</resul t Message>
</resul t Messages>

4.4.2 Creating adatafile set with multiple filesin asingle request

Asan dternative to creating the datafile set in the 'conversationa’ mode, the data file sets
endpoint offers the client the ability to create a data file set with one or more data files, together
with the file contents, in one request.

This feature requires the client to POST a so called multipart request message that contains the
following parameters:

e The"dataFileSetCode" that contains the unique code for the data file set that will be created.
¢ Oneor more "file" parameters that contain the file contents along with file metadata.

Multipart requests can be constructed with various technologies. The following is an examplein
HTML:

Inan HTML based Ul the following sample form could be used to create a datafile set with code
as "myfileSet" and upload two files with code "fileCodel" and "fileCode2" in one request:

<htm >
<formname="fornmtest" action="/filesets/nmultipart" nmethod="POST"
enctype="nul ti part/formdata">
<input type="text" name="dat aFil eSet Code" val ue="nyfileSet" />

<input type="file" name="fil eCodel" val ue="" />
<input type="file" name="fil eCode2" value="" />
<input type="submit" val ue="Submt" />
</fornm
</htm >

OHI Components - Common Features Guide 65

http://slcibah.us.oracle.com:8888/OHI-Main/13887-DSY

ORACLE’

The system's response to this request will have the following structure:

<dat aFi | eSet code='nyfileSet' >
<li nks>
<link rel="self' type='"application/xm' href='"/datafil esets/
nyfileSet'/>
</links>
<dat aFi | es>
<datafil e code='fil eCodel' >
<li nks>
<link rel="file' href='"/datafilesets/nyfileSet/datafiles/
fileCodel/data' />
</links>
</datafile>
<datafile code='fil eCode2' >
<li nks>
<link rel="file' href='"/datafilesets/nyfileSet/datafiles/
fil eCode2/data' />
</links>
</datafile>
</ dat aFi | es>
</ dat aFi | eSet >

In case of failure the response will be as specified in the standard structure under "Indicating
Failure" in Response Messages.?

4.4.3 Other Available Operations

4.4.3.1 Get defined data file setsin the system
This request can be used to fetch the details of all the available data file setsin the system. Thisis
aURI based request (/datafilesets) and supports pagination®.

4.4.3.2 Get details of a data file set

This request can be used to fetch the details of datafile setsin the system. Thisisa URI based
request. The URI must have the following pattern: /datafil esets/{ datafil esetcode}

The response to this request will have the following structure:

<dat aFi | eSet code='"' description="" |ocked="N >
<dat aFi | es>
<dataFile code ='' description ="' contentLength="" filePath="">
<li nks>

<link rel="file'" href='"/datafil esets/{datafil esetcode}/datafiles/
{datafil ecode}/data' />
</links>
</datafile>
</ dat aFi | es>
</ dat aFi | eSet >

4.4.3.3 Get details of adatafile

This request can be used to download the contents of a data filein the system. Thisisa
URI based request. The URI must have the following pattern: /datafil esets/{ datafilesetcode} /
datafiles/{ datafilecode} /data

4.4.3.4 Update details of a data file set

This regquest can be used to update the details of a datafile set in the system. The URI will have
the following pattern: /datafilesets

The Request / Response xml structures are the same as for creating a data file set.

OHI Components - Common Features Guide 66

http://slcibah.us.oracle.com:8888/OHI-Main/13887-DSY
http://slcibah.us.oracle.com:8888/OHI-Main/13887-DSY.html

ORACLE’

4.4.3.5 Update details of a datafilein a data file set

This request can be used to update the details of adatafilein the system. The URI will have the
following pattern: /datafil esets/{ datafilesetcode} /datafiles/

The Request / Response xml structures are the same as for creating afile within datafile set.

4.4.3.6 Delete a data file set

This request can be used to delete adatafile set in the system. Thisis a URI based request. The
URI will have the following pattern : /datafilesets/{ datafilesetcode} /

The response message structure will be as specified in Response Messages.*

4.4.3.7 Delete adatafilein a data file set

This request can be used to delete the details of adatafilein adatafile set in the system. URI
will have pattern: /datafilesets/{ datafil esetcode} /datafiles/{ datafilecode}

The response message structure will be as specified in Response Messages.”

For details on how attributes in the request messages are handled, refer to the Attribute
Handling®.

4.4.4 Error Messages

The following error messages, that are specific to the data file set integration point may be
returned in the response messages:

Scenario Message code Message Severity
Create adatafile set DAT-IP-DAFI-001 Datafile set code { 0} Fatal
already exists
Create datafilewithina | DAT-IP-DAFI-002 Datafile code { 0} Fatal
datafile set. already exist within the
datafile set
Update/Delete/Get adata | DAT-IP-DAFI-003 Datafile set code{0} is | Fatal
file set or Update/Delete/ unknown
Get filewithin adatafile
Set.
Update/Delete adatafile | DAT-IP-DAFI-004 Datafile set code{0} is | Fatal
set or Update/Delete file locked for modification
within a datafile set.
Update/Delete/Get data | DAT-IP-DAFI-005 Datafilecode{0} is Fatal
file within adatafile set. unknown to datafile set
{1}

]
4.5 Activity Integration Point

The activity integration point provides the following functions:

e Create an activity with the intention to start it later.
e Create and immediately start an activity.

¢ Recover an activity.

e Monitor status of an activity.

Creating and Starting an Activity

This request enables an external system to create and start an activity. The URI that is used
determines how the system processes the request. Use URI:

OHI Components - Common Features Guide 67

http://slcibah.us.oracle.com:8888/OHI-Main/13887-DSY
http://slcibah.us.oracle.com:8888/OHI-Main/13887-DSY
http://slcibah.us.oracle.com:8888/OHI-Main/13662-DSY
http://slcibah.us.oracle.com:8888/OHI-Main/13662-DSY

OHI Components - Common Features Guide

ORACLE’

e Jactivitiesto create an activity but not execute it yet.
o /ectivitieg/start to create an activity and immediately executeit.
o Jactivities/{ activity_id}/start to start an activity that was created earlier.

Request M essage
The start activity request will have the following structure:

<activity
| evel =""
code=""
description=""
par anet er Set Code="">
<cont ext Fi el ds>
<contextField

val ue=""/>
</ cont ext Fi el ds>
<par anet er s>
<par anet er

</ par anmet er s>
</activity>

Context Field

Some activity types can only be started in a specified context. Thisinformation is provided via
the <contextFields> element. The attribute "name" of element <contextField> must point to the
context and the attribute "value" must contain the logical key for the context.

Example: activity type SUPERSEDE REVERSE that is defined at level TS (or TransactionSet)
can only be started in context of a financial transaction set. The financia transaction set code
must be provided as value to set-up the execution context.

Response M essage

If the activity was successfully created but not started (i.e. URI /activities was used) then the
response will have the following structure:

<activity level = status="">
<li nks>
<link rel = action/startprocessing' type= application/xm"' uri="/
activities/{activityld}/start'/>
</links>
</activity>

Note that the URI in the link can be used by the client to start the activity. Attempt to start an
activity that isnot in avalid statei.e. already completed activity, or an activity that is currently
being processed will have asimilar response as that of get activity status.

If the activity was created and executed immediately (i.e. URI /activities/start was used) then the
response will have the following structure:

<activity level ="" status="">
<li nks>
<link rel="self' type="application/xm"' uri="/activities/
{activityld}'/>
</links>
</activity>

In case the activity could not be registered in the system, for example because the activity code
is unknown, the response will be as specified under "Indicating Failure" topic in Response

Messages'.

68

http://slcibah.us.oracle.com:8888/OHI-Main/13887-DSY
http://slcibah.us.oracle.com:8888/OHI-Main/13887-DSY

ORACLE’

Recover an Activity

This request enables an external system to recover afailed activity. Thisisa URI based request
with the following pattern: /activities/{ activityid} /recover.

Only activitiesthat failed in status TE/CT can be recovered. Examples of such afailure could be
the inability of sending out financial messages or errorsin dynamic logic or any other technical
error. Attempt to recover an activity that is not in valid state will have a similar response as that
of get activity status.

The recover request will have asimilar response as that of a start activity.
Status Monitoring

Step 1: Get activity status

This feature provides the ability to fetch the status of an activity. ThisisaURI based request with
the following pattern: /activities/{ activityid} .

Response M essage

<activity
| evel =""
status="">
<li nks>
<link rel = nessages' href="/activities/{activityid}/messages'/>
</links>
</activity>

The <resultM essages> element will only be available when the activity has concluded with
errors. If the activity has concluded with errors and it is desirable to have the details of the errors
then Step 2 must be performed.

Step 2: Get activity result messages

This feature provides the ability to get the result messages of an activity. The URI received from
the step 1 should be used i.e /activities/{ activityid} /messages. This supports pagination®.

Response M essage
The response will have the following structure:

<activityMessages>
<resul t Messages result="" elenentld="">
<resul t Message
code =""
>
messageText
</resul t Message>
</resul t Messages>
</ activityMessages>

Element and Attribute

e <resultMessage elementld> its an optional parameter. It provides consolidation of the
messages based on its value. The elementld attribute usage for an activity is defined in the
description of the activity type. Example: For the provider import activity the element id can
be provider code in combination with the flex field code for the provider resource.

OHI Components - Common Features Guide 69

http://slcibah.us.oracle.com:8888/OHI-Main/13887-DSY.html

ORACLE’

Optional: Activity Notification

The activity integration point provides acall back feature to a pre-configured

endpoint. This feature provides the following response to the configurable

endpoint once the activity triggered by an external system through IP has

concluded. The generic notification endpoint can be configured as property
‘ohi.activityprocessing.notification.endpoint' in the OHI Components application's properties
file. The notification endpoint can be overridden for specific activity types, e.g. specify property
‘ohi.activityprocessing.notification.endpoint. SELECT_TRANSACTIONS_IN_SET' to have

the system deliver al notifications for activity type SELECT _TRANSACTIONS IN_SET toa
specific endpoint.

Response Message

The response message once the activity has concluded will have the following structure:

<activity level ="" status="">
<li nks>
<link rel = nessages' href="/activities/{activityid}/messages'/>
</links>

</activity>

Note: the response may contain a <dataFileSets> element. Refer to Special parameters for
details.

In case of failure to retrieve the status of activity (Example: activity code is unknown) the
response will be as specified under "Indicating Failure" topic in Response Messages’.

4.5.1 Conversation Parameter

The responseDatalFileSetCode parameter influences the standard request-response mechanism for
an activity, it istherefor referred to as a conversation parameter.

Asisthe case with any activity parameters, conversation parameters can only be used if they are
defined for the activity type. The following is an example of a start activity request that makes
use of the responseDataFileSetCode parameter:

<activity level ="" code="">
<par anet er s>
<par aneter name="responseDat aFi | eSet Code" val ue="RESPONSE_DFS"/ >
</ par amet er s>
</activity>

Assuming that the parameters and values are valid, the request in this exampl e creates an activity.
As part of the execution aresponse datafile set with code "RESPONSE DFS' is created. The
response to the status monitoring requestsi.e. get activity status and the call back response
(<resultDataFileset > element will be added to the above response) will have the following
structure:

Response Message

<activity level ="" status="">
<li nks>
<link rel = nessages' href="/activities/{activityid}/messages'/>
<link rel="file'" href="datafil esets/{datafil esetcode}/datafile/
{datafil ecode}/data' />
</1inks>
</activity>

The response file can be downloaded by using "Get details of adatafile" request from datafile
integration point : URI : datafilesets/{ datafil esetcode} /datafil e/{ datafilecode} /data should be use
toinitiate arequest to download the response file.

The response file will have the following structure:

OHI Components - Common Features Guide 70

http://slcibah.us.oracle.com:8888/OHI-Main/13887-DSY

ORACLE’

<{root El el ement} >
<resul t Messages result="" el enentld="">
<resul t Message

Text Message
</resul t Message>
</resul t Messages>
</{root El el enent }>

The {rootElelement} for the response file is described in the activity type.

4.5.1.1 Error Messages
The following error messages, that are specific to the activity integration point may be returned in

the response messages:

M essage code Scenario M essage Severity

ACT-IP-ACTY-001 Create or Create & Start | Activity code {0} is Fatal
activity unknown

ACT-IP-ACTY-002 Create or Create & Start | Activity typelevel {0} is | Fatal
activity unknown

ACT-IP-ACTY-003 Create or Create & Start | Parameter set code {0} is| Fatal
activity unknown

ACT-IP-ACTY-004 Status monitoring and Activity 1d {0} is Fatal
get result messages unknown

ACT-IP-ACTY-005 Create or Create & Start | Use either a parameter Fatal
activity set or parameters but not

both

4.5.1.2 Examples

4.5.1.2.1 Create or Start Activity request - SELECT_TRANSACTIONS_IN_SET

<activity
| evel ="QA"
code="SELECT_TRANSACTI ONS_| N_SET"
description="Sel ect processed transaction in a new set">
<par anet er s>
<par anet er nane="fi nanci al Tr ansact i onSet Code"
val ue="FI NANCI ALTRANSACTI ONSRUN_20141107"/ >
<par anet er nane="fi nanci al Transacti onSet Descr" val ue="Fi nanci al
transactions set for Nov-07, 2014"/>
<par anet er nane="transacti onCr eat edDat eFroni' val ue="2010-01-01"/>

<par anet er nane="transacti onCr eat edTi meFroni' val ue="0800"/>
<par anet er nane="transacti onCr eat edDat eTo" val ue="2014-11-06"/>
<par anet er nane="transacti onCreat edTi mreTo" val ue=""/>
<par anet er nane="paynent DueDat eFr oni' val ue="2010-01- 01"/ >
<par anet er nane="paynent DueDat eTo" val ue="2014-11-14"/>
<par anet er nane="i ncl udeUnfinal i zed" val ue="Y"/>
</ par anet er s>
</activity>

4.5.1.2.2 Create or Start Activity request - SUPERSEDE

<activity
| evel ="TS"
code=" SUPERSEDE"
descri ption="Supersede applicable transaction in the set
FI NANCI ALTRANSACTI ONSRUN_20141107" >

OHI Components - Common Features Guide 71

ORACLE’

<cont ext Fi el ds>
<contextField
nane="transacti onSet"
val ue="FI NANCI ALTRANSACTI ONSRUN_20141107"/ >
<cont ext Fi el ds>
</activity>

4.5.1.2.3 Create or Start Activity request - PROVIDER_IMPORT

<activity
| evel =" A"
code="PROVI DER_| MPORT"
description="Processed data file set 001V11">
<par anet er s>
<par anet er name="dat aFi | eSet Code" val ue="001Vv11"/>

<par anet er name="r esponseDat aFi | eSet Code" val ue="response001Vv11"/
>

</ par amet er s>
</activity>

I
4.6 File Based Import

OHI Components applications support file based dataimport for the following entities:

e Import Providers and Provider Groups
e Import Relations

Uploading files and processing the file contents is a two step process:

Upload the file using Data file set integration Point™
Process the file contents by initiating the proper activity type using the Activities Integration
Point*,

e Provider Import activity type to process the file based request for the provider
integration point.

* Relation Import activity type to process the file based request for relation integration
point.

Parameters
The parameters for the file import based activity are as follows:

* DataFile Set Code
This parameter indicates the data file set that needs to be processed.

The activity can be created only when the Indicator Locked on the data file set code is'N' otherwise an error ACT-VL-
FIAT-001 israised.

Once the activity picks up a datafile set for processing (i.e. starts an created activity), it places alock on it by updating the indicator
Locked to 'Y". If the indicator Locked is aready found to be "Y' then an error ACT-VL-FIAT-001 israised. Activity must unlock the
datafile set in caseif the processing completes with the error(s).

* Response Data File Set Code

The datafile set code that should be used for the data file set of the responsefile. If not
provided the system generates a UUID based value as datafile set code.

OHI Components - Common Features Guide 72

http://slcibah.us.oracle.com:8888/OHI-Main/13891-DSY
http://slcibah.us.oracle.com:8888/OHI-Main/13894-DSY
http://slcibah.us.oracle.com:8888/OHI-Main/13894-DSY

ORACLE’

DataFile Validation

Thefirst step in every datafile import activity isto check whether the datafile that is provided

through the parametersis valid for the specific dataimport. The following checks are executed:

1. Doesthe datefile exist (i.e. isthere adatafile in the datafile set)?
2. Isthedatafile empty?

3. Isthedatéfile of the correct type for the import activity (i.e. does it have the correct root
element)?

Error Message

Thefile import based activity can result in the following messages:

Code Sev M essage

ACT-VL-FIAT-001 Fatal Datafile set { code} islocked
and cannot be picked up for
processing.

ACT-VL-DAFI-001 Fatal No datafile existsin datafile set
{code}.

ACT-VL-DAFI-002 Fatal Datafile{code} is empty.

ACT-VL-DAFI-003 Fatal Datafile {code} isof incorrect
type for this integration point.

4.6.1 Example : Provider Import

4.6.1.1 Step 1: Createdata file set with a datafile

4.6.1.1.1 Request M essage

The create data file set with a data file request will have the following structure:

<dat aFi | eSet code=' Provi der| nmport_20141210_01" descri ption ="Provi der
I mport">
<dataFi |l e
code="| ndi vi dual Provi derFi | el
descr="Individual Provider File 1
fil epath="systenl/tnp/ Providers/1_ 1212121 v2.xm"' -- This can be the
reference path of the external system This is for information only.
/>
</ dat aFi | eSet >

4.6.1.1.2 Response M essage

<dat aFi | eSet code=' Provi der| nport_20141210_01' >
<li nks>
<link rel ="self' type='application/vnd.ohi-xm"' uri="/datafilesets/
Provi der | nport _20141210_01'/>
</links>
<dat aFi | es>
<dat aFi | e code="1ndi vi dual Provi derFil el' >
<li nks>
<link rel="content' type="text/xm' uri='"/datafilesets/
Provi der | nport _20141210_01/ dat afi | es/ | ndi vi dual Provi derFil el/data' />
</links>
</ dat aFi | e>
</ dat aFi | es>
</ dat aFi | eSet >

OHI Components - Common Features Guide

73

ORACLE’

4.6.1.2 Step 2: Upload Content

Use the URI /datafilesets/Providerlmport_20141210 01/datafiles/Individual ProviderFilel/data
and upload the file having the structure as specified in Provider Integration point.

4.6.1.2.1 Response M essage

The add content to data file request's success response will have an appropriate HT TP status code
in the header and the following structure:

<dat aFi | eSet code='Provi der|nport_20141210_01' >
<l i nks>
<link rel="self' type="application/vnd.ohi-xm"' uri="/datafilesets/
Provi der | mport _20141210_01'/>
</1inks>
<dat aFi | es>
<dat aFi | e code='1ndi vi dual Provi derFilel' >
<l i nks>
<link rel="content' uri='"/datafilesets/
Provi der | nport _20141210_01/ dat afi | es/ | ndi vi dual Provi derFi |l el/data' />
</1inks>
</ dat aFi | e>
</ dat aFi | es>
</ dat aFi | eSet >

4.6.1.3 Step 3: Initiate the Provider Import Activity using Create Activity (/activities)

<activity level ="G" code="PROVI DER_| MPORT" descri pti on="Processed data
file set 001.11">
<par anet er s>
<par anet er name="dat aFi | eSet Code"
val ue="Provi der | nmport _20141210_01"/>
<par anet er name="r esponseDat aFi | eSet Code"
val ue="responseProvi der | nmport_20141210_01"/ >
</ par anet er s>
</activity>

4.6.1.3.1 Response M essage

The start activity response will have an appropriate HT TP status code in the header and the
following structure:

<activity code=' PROVI DER_| MPORT' status ="IN'>
<l i nks>
<link rel="action/startprocessing' type=' application/vnd. ohi-xmn"
uri='"/activities/12345/start'/>
</links>
</activity>

4.6.1.4 Step 4: Start Provider Import Activity
Use the URI /activities/12345/start to start the activity.

4.6.1.4.1 Response M essage

The start activity response will have an appropriate HT TP status code and location in the header
and will have the following structure;

<activity
code="PROVI DER_| MPORT"
status="I|P"'>
</activity>

OHI Components - Common Features Guide 74

ORACLE’

4.6.1.4.2 Step 5: Get Status

Use the URI /activities/12345 to get the status of the activity

4.6.1.4.3 Response M essage

When the activity has not concluded the response structure will be

<activity code="PROVI DER_| MPORT" status="IP" />

When the activity has concluded with business errors the response structure will be

<activity code="PROVI DER | MPORT" st atus="CB">
<li nks>
<link rel =" messages' uri='/activities/ 12345/ messages'/>
<link rel="datafilesets' uri="datafilesets/
responseProvi der | nport_20141210_01/datafil es/ 67890/ data’' / >
</links>
</activity>

4.6.1.5 Step 6: Get result messages

Y ou can get more information about the result message by sending arequest to URI /
activities/12345/messages

4.6.1.5.1 Response M essage

<activi tyMessages>

<resul t Message code ="REL-|P-PROV-031">
REL- | P- PROV-031: Country code AA i s unknown
</resul t Message>
</resul t Messages>

<resul t Message code ="REL-I|P-PROV-031">
REL- | P- PROV-031: Country code AA i s unknown
</resul t Message>
</resul t Messages>
</ activityMessages>

4.6.1.6 Step 7: Get responsefile

Y ou can download the response file by using "Get details of adatafile" request from datafile
integration point with URI - datafil esets/responseProviderlmport_20141210 01/datafiles/67890/
data

4.6.1.6.1 File Details

<i ndi vi dual Provi der sResponse>
<resul t Messages result="F" el enent| d="1234 A">
<resul t Message code ="REL-|P-PROV-031">
REL- | P- PROV-031: Country code AA i s unknown
</resul t Message>
</resul t Messages>
<resul t Messages result="F" el enent| d="1235 A">
<resul t Message code ="REL-|P-PROV-031">
REL- | P- PROV-031: Country code AA i s unknown
</resul t Message>
</resul t Messages>
</i ndi vi dual Provi der sResponse>

OHI Components - Common Features Guide 75

4.7 Seed Data

4.7.1 Activity Types

ORACLE’

Code Description | Type Level

Top Level?

ul?

Dynamic
Record
Definition

Common /
Claims

PROVIDER_IMiAQERTE the
providers
contained in
the datafiles
of the data
file set.

GL

FILE_IMPOR

TCommon

RELATION_INIfAQHRTE the
relations
contained in
the datafiles
of the data
file set.

GL

FILE_IMPOR

TCommon

4.7.2 Flex Code Field Usages

4.7.2.1 Dynamic Record Definition FILE_IMPORT

Name Field Code |Pick List

Code Def

Mandatory?

Sequence

Display
name

dataFileSetCogl€100

responseDataFi[eBafCode

Y

N

DataFile Set
Code

Response
DataFile Set
Code

http://dl cibah.us.oracle.com:8888/OHI-Main/13887-DSY
http://dl cibah.us.oracle.com:8888/OHI-Main/13887-DSY
http://dl cibah.us.oracle.com:8888/OHI-Main/13887-DSY .html
http://dl cibah.us.oracle.com:8888/OHI-Main/13887-DSY
http://d cibah.us.oracle.com:8888/OHI-Main/13887-DSY
http://d cibah.us.oracle.com:8888/OHI-Main/13662-DSY
http://d cibah.us.oracle.com:8888/OHI-Main/13887-DSY
http://dl cibah.us.oracle.com:8888/OHI-Main/13887-DSY .html
http://dl cibah.us.oracle.com:8888/OHI-Main/13887-DSY
http://d cibah.us.oracle.com:8888/OHI-Main/13891-DSY
. http://dlcibah.us.oracle.com:8888/OHI-Main/13894-DSY

© © N o g > w DN P

N
= O

OHI Components - Common Features Guide

76

ORACLE’

5 Integrating multiple OHI Applications

5.1 Data Replication

Introduction

The focus of this part of the document is synchronization or replication of data between various
OHI Components applications.

An example of thisisthereplication of person datain OHI Enterprise Policy Administration
(OHI Policies) to OHI Claims. Both applications make use of the same component or sub system
for maintaining that data. Customers could use the Persons HTTP APl message based service or
the Data File Set interface for maintaining person datain both OHI Policies and OHI Claims.

To prevent customers from being burdened with having to synchronize person data across
multiple OHI applications, Oracle provides capabilities for replicating these changes to other
(OHI) applications in an automated fashion. In this scenario, OHI Policies acts as the system

of record or source system for the person data. Whenever a person or adetail of a person, like
an address, is changed in OHI Palicies (the source system) it creates a replication event for that
member. Target systems, like OHI Claimsin this example, subscribe to receive these replication
events and use these as a trigger to automatically retrieve the changes.

Entitiesfor which Data Replication between OHI Components applicationsis supported

The following table provides an overview of the entities for which Data Replication can be
enabled and the versions of the OHI Components applications in which this feature was first
provided.

Entity Sour ce System Target System

Persons OHI Policies 2.16.1.0.0 OHI Authorizations 2.16.1.0.0
Persons OHI Policies 2.16.1.0.0 OHI Claims 2.16.1.0.0
Authorizations OHI Authorizations 2.16.1.0.0 OHI Claims 2.16.1.0.0

Oracle identifies the systems that qualify as source and target systems and which versions of
these systems are certified to exchange data using the data replication mechanism.

In the following paragraphs the concepts of this data replication mechanism are explained as well
as the way to configure eligible OHI Components applications to act as either source or target
systems.

Data Replication Overview and Concepts

This paragraph provides a high-level overview of the data replication mechanism, which can be
broken down into the following major areas:

¢ Change detection: the source system is responsible for detecting changes to entities that need
be replicated to target systems. These replication events include insert, update and delete
operations.

« Event logging: the source system maintains alog of the replication events that need to be
replicated.

e Event retrieval / publishing: events are returned by the source system per request of target
systems. For that purpose, the source system exposes an HTTP API resource that target
systems can use to retrieve replication events.

* Event processing: the target system processes the events to update its local representation of
the entities.

OHI Components - Common Features Guide 77

ORACLE’

The following pictures provide a high-level overview of the solution, identifying processing in
source and target systems:

Change Detection, Event Logging & Event Publishing

- {E=]

ue
Event Log

Detect
Change

send
Response

Log
Event

Request
Events

Dala Changs }

—

Source

Send
Message

Queue
Events

e e e

Target

Event Processing

Request

Query

Send

Source

Entity

—

[T

Entity Response

Select

Send

Process Mark Event

—

e

Target

Event Message

k.
wait H Entity }—b{

e

Entity as processed

Change Detection and Change L ogging in Sour ce Systems

Changes are tracked at the ‘root aggregate’ entity level, i.e. for a person and not for a person's
address. Changes to details propagate up to the root aggregate. Changes are tracked for each
database transaction in the system and for each transaction new replication events are created,;
replication events that were created in previous transactions are never updated.

The following table lists examples of changes and the resulting data replication events:

Change in the sour ce system in one transaction

Data Replication event(s) created by the system

A new person is added with an address

One Insert event for the person

The last name of an existing person is changed

One Update event for the person

The last name for the same person is changed again

One Update event for the person

For three persons the |ast names are changed

Three Update events, one for each person

A new address is added for an existing person

One Update event for the person

The name of an existing person is changed and a
new address is added for the same person

One Update event for the person

An address is removed from the person's list of
addresses

One Update event for the person

A person and all its associated data (like addresses
and, marital statuses) is removed

One Delete event for the person

Three persons and their associated data are removed

Three Delete events, one for each person

Configuration optionsin the Source System

Change detection and logging in a source system is automatically activated when the system is
started. It is driven by seeded configuration that is provided by Oracle. Source systems expose an
HTTP API resource 'api/replicationevents' that target systems use to retrieve replication events
(i.e. the source system does not publish or push replication events). The same resource supports

the following operations:

Operation
GET api/replicationevents/entities

Description

Returns an overview of the entities and their
configuration details for which the system isable to
track changes.

GET api/replicationevents/entities/{ entity}

Returns configuration details for a specific business
entity.

OHI Components - Common Features Guide

78

ORACLE’

PUT api/replicationevents/{ entity} To change the configuration for the given entity. It
can be used to enable or disable replication event
logging for the given entity. Any other elements
cannot be changed, attempts to change these will
simply be ignored.

For example, to disable change detection and logging for the "persons” entity execute the
following:

curl -H ' Content-Type: application/xm' -H 'Accept: application/xm"' -X
PUT -d

' <sour ceRepl i cati onEvent LogConfi guration enabl ed="N"' />'

http://1ocal host: 8001/ api/replicationevents/persons

To re-enable change detection and logging for the "persons’ entity execute the following:

curl -H ' Content-Type: application/xm"' -H 'Accept: application/xm"' -X
PUT -d

' <sour ceRepl i cati onEvent LogConfi gurati on enabl ed="Y" />'

http://1ocal host: 8001/ api/replicationevents/persons

Remarks:

¢ Oracle assumes that this configuration is very static. It may take up to 15 minutes before the
system picks up a change to this configuration.

e Once change detection and logging for an entity is disabled the HTTP API resource must be
used to enableit again, e.g. if it isdisabled restarting the system will not re-enable change
detection and logging.

Retrieving Replication Eventsthat werelogged by a Sour ce System

A GET operation on the 'api/replicationevents/{ entity} /events' resource provides access to
the Replication Events that a source system logged for a given entity. It accepts the following
parameters:

Parameter Description

Timestamp (default: null) Identification of the last replication event entry
that was already received by the target system.
The source system will return replication event
entries with atimestamp that is larger than the given

timestamp.
Limit (default: null) For pagination of replication events.
Timestamp Threshold (default: null) The same timestamp could occur multiple times

(i.e. multiple events were logged at the same time).
It might be the case that the target system did not
receive all eventslogged for that timestamp. The
Timestamp Threshold informs the source system
exactly how many replication events that were
logged for the business entity at the given timestamp
were already received by the target system. If more
replication events were logged for the business
entity at the given timestamp the source system will
return all these replication events again.

Remarks:

* The source system paginates responses. If the page size limit is not specified in the request it
will return a maximum of 1000 replication events (configurable by setting system property
‘ohi.ws.replicationevents.pagination.limit’). If the number of events that were logged for
the business entity for a specific timestamp exceeds the pagination limit, the latter will be
ignored. If additional results are available, the response contains alink that the client can use
to get the next set.

e Themediatype/ payload format is ‘application/xml".

OHI Components - Common Features Guide 79

ORACLE’

e For each business entity, the response contains (absolute) URIs that point to the source
system’s resource for retrieving the entity, e.g. 'http://host: port/api/persons/123' for retrieving
the person that can be identified with id ‘123" in the source system. The target system will use
the URIs to get the updated business entity.

Configuring an OHI Application Target System to retrieve Replication Eventsfrom a
Sour ce System

An OHI Components application that can retrieve replication events from a source system

(or from multiple source systems) comes with the basic setup and processing logic for that
purpose. However, by default, retrieving replication events from a source system is not enabled.
Customers that want to enable replication of datato atarget system must configure the base URI
for each entity for which datareplication is supported in the target system.

The following table lists the system properties for currently supported data replication use cases:

Entity Sour ce System Target System System Property | Sample Value

Persons OHI Policies OHI Authorizations | ohi.ws.sourcesystem| http://host:port/
.persons.baseurl policies

Persons OHI Palicies OHI Claims ohi.ws.sourcesystem| http://host:port/
.persons.baseurl policies

Note: the valuesin the System Property and Sample Vaue columnsis formatted for readability,
these should normally be specified as a single string, without line breaks.

An OHI Components application that is preconfigured to retrieve change events from a source
system checks for each entity if the associated system property is given avalid URI value. If that
isthe case, the configuration for retrieving replication events for that specific entity from a source
systemis enabled.

If the configuration was enabled for at least one entity, the system starts a Data Replication
Global activity that frequently runsto collect replication events and make sure that these are
processed. The interval for running the Data Replication Global activity is configurable, it can be
influenced by setting system property 'ohi.datareplication.activity.runinterval' (value in seconds,
by default it is 600).

The Data Replication Global activity executes the following workflow for every entity for which
the configuration is enabled:

e If noneisrunning yet, the Data Replication Global activity spawns an instance of the
Replication Event Retriever Global activity for each business entity for which data
replication is enabled. It is the responsibility of this activity to copy replication events from
the source system verbatim, i.e. it does not check for possible duplicates.

The entity for which this activity instance should retrieve changesis passed to it as input
parameter. The Replication Event Retriever Global activity retrieves replication events
from the configured source system, using the GET operation on the source system's ‘api/
replicationevents/{ entity}/events resource.

It stores the replication events returned by the source system in alocal events table from
which these are processed. Aslong as the response message indicates that additional
replication events are available the Replication Event Retriever will continue to retrieve and
store these.

e If noneisrunning yet, the Data Replication Global activity spawns an instance of the
Replication Event Processor Global activity. The Replication Event Processor processes
events for agiven entity. The processing algorithm is explained in the following paragraph.

Activities and their status can be tracked from the Activities page in OHI Components
applications. Instances of the Replication Event Retriever Global Activity and the Replication
Event Processor Global activity that completed successfully will be removed periodically if the
Data Purge routine (see below) is activated.

OHI Components - Common Features Guide 80

ORACLE’

Processing Replication Eventsin a Target System

The source system created new replication events for any change to a specific entity. The
Replication Event Retriever Global activity retrieved all these replication events from the
configured source system.

An overview of the data attributes in a target system is provided in the following table:

Attribute Data Type Required? Description

Entity varchar2(30) Yes Entity.

Source System varchar2(30) Yes The source system.
Source System Version | varchar2(30) Yes Source system version.
Source Subject UUID varchar2(36,0) Yes Unique identifier of the

entity as provided in the
source system at the time
it was created.

Logged Timestamp timestamp Yes | dentifies when the
replication event was
logged in the source
system.

Operation varchar2(1) Yes Aslogged by the source
system. Possible values:
I; U; D (Insert, Update,
Delete respectively).

Retrieved Timestamp timestamp Yes Identifies when the
replication event was
retrieved.

Business Entity URI varchar2(200) No URI for retrieving the up
to date entity from the
source system. Empty in
case of Delete events.

Activity Id number(30,0) No Reference to the activity
that processes the entity.

Processed Timestamp timestamp No | dentifies when the
replication event was
processed.

Processed Result varchar2(2) No Superseded (SU) /
Completed (CO) /
Errored (ER)

First, the processor checks if dynamic logic functions are available for al replication events

for an entity that are not processed yet. If that is not the case then it raises an activity message
REP-CTET-001, 'Dynamic Logic function with signature {0} and code {1} not found' and the
activity will end with status Completed with Errors. The use case for dynamic logic functionsis
explained below.

If the activity has validated that dynamic logic functions are available it will processthe
replication events that were retrieved. The replication events in the target system's database
may contain duplicate entries or events that make no sense to even process. An example of the
latter is a series of update events for a specific entity that are followed by a delete event; in that
case it makes no sense to update the entity in the target system because it is already clear that it
will eventually be deleted. Therefore processing replication eventsin atarget system requires
consolidation (‘rolling up the changes) to prevent replication of the same entity multiple times
and to prevent doing unnecessary work.

The algorithm will be explained in terms of the data that OHI Components applications store for
replication events that are retrieved from a source system.

The algorithmisasfollows:

e Firgt, 'roll up' changes by marking events for an entity as Superseded and set the Processed
Timestamp using the following rules:

OHI Components - Common Features Guide 81

ORACLE’

¢ Any eventsfor an entity with the same Source Subject UUID prior to a delete operation
for that specific entity are marked as Superseded. Only the delete event for that entity
remains to be processed.

e Any insert or update events except the last one for an entity with the same Source
Subject UUID for which there is no delete event are marked as Superseded. Only the last
insert or update event for that entity remains to be processed.

* Loop over (remaining) non-processed replication events (for which the Processed Timestamp
isnull) to process these:

« Insert anew or update an existing local representation by using the Business Entity URI
to retrieve the entity from the source system and calling existing import functions on
existing services with the data that was retrieved.

* Incase of adelete operation the entity is queried using the Source Subject UUID.
Processing is asfollows:
If the entity could not be resolved using the Source Subject UUID then the processed
result in the Target Replication Events entity will be set to Completed.
If the object could be resolved it will be deleted along with all its details.
If the entity could be resolved but the delete operation fails, for example because there
are references to the business entity in the target system, then a non-fatal message will
be added to the activity and the Processed Result will be set to Completed.

If processing of an event resultsin an error then:

e The processed result for that specific replication event is set to Errored.

e The status of the activity that processed the entity is set to Completed with Errors so that it
can be recovered after the problem was investigated and fixed.

« Morerecent events for an entity with the same Business Entity URI will not be processed.

e Processing will continue for events of the same entity but with a different Business Entity
URI. Thisissimilar to importing afile: in that case every element is processed independent
from other elements.

Overcoming Model and Setup Differences between OHI Applications
The data replication mechanism can handle differences between entitiesin various applications:

* Entity models may have application specific differences and the models may evolve over
time. Moreover, changes to the entity model may not be applied to all OHI Components
applications at the same time. Similarly, customers may uptake new versions of applications
at different times.

e The setup may differ from application to application. For example, the person entity in OHI
Policiesislikely to be extended with dynamic fields that are not comparable to the dynamic
fields for a person in OHI Claims. Other examples that may differ for the person entity
include (but are not limited to) the code to identify a Dynamic Logic script for formatting a
person’'s name and the access restriction code for viewing a person's (contact) details.

Dynamic fields (and values) that are specified for the entity in the source system will be ignored
when importing the entity in the target system. Dynamic field matching is based on the usage
name of the dynamic field. The data type of the dynamic field is not taken into account. The
following table lists how OHI Applications deal with a number of sample set up scenarios:

Dynamic Field set up in Source
System

Dynamic Field set up in Target
System

Result when importing entity

Dynamic field with name 'foo' and
value 'bar'

Dynamic field with name 'foo'
does not exist

Dynamic field isignored

Dynamic field with name 'foo’,
type String and value 'bar'

OHI Components - Common Features Guide

Dynamic field with name 'foo’,
but of type Date

Import fails

82

ORACLE’

Dynamic field with name 'foo' Mandatory dynamic field with Import fails unless dynamic logic
does not exist name 'foo' exists is used to populate the field

A dynamic Logic function is used to overcome differences between entities in source and target
applications. For each entity, a Data Replication Transformation Dynamic Logic function must
be configured for the combination of OHI Components applications (versions) that is certified to
exchange data using the data replication mechanism.

The following tables list the Data Replication Transformation Dynamic Logic configuration for
OHI Authorizations:

Entity Sour ce System Target System Dynamic Logic Dynamic L ogic
Code Signature
Persons OHI Policies OHI Authorizations | POL216100_AUT21638@8ons Data
2.16.1.0.0 2.16.1.0.0 Replication

Transformation

and for OHI Claims:

Entity Sour ce System Target System Dynamic Logic Dynamic L ogic
Code Signature
Persons OHI Policies OHI Claims POL216100_CLA218680ons Data
2.16.1.0.0 2.16.1.0.0 Replication
Transformation
Authorizations OHI Authorizations | OHI Claims AUT216100 CLAZ21&.0Morizations
2.16.1.0.0 2.16.1.0.0 Data Replication

Transformation

For changes to the factory models of entities, Oracle provides Data Replication Transformation
Dynamic Logic scripts as sample data. Customers can use these as a starting point and freely
adapt these to fit their entity specific configurations.

Dynamic Logic Signature

Data Replication Transformation Dynamic Logic scripts are Dynamic Logic functions with an
entity-specific signature named "<Entity> Data Replication Transformation” and the following
input parameters:

In/Out Name Type Description

In xmlEntity GPathResult The xml payload
representation of the
entity that was retrieved
from the source system.

The GPathResult is
constructed using an
XmlSlurper. In Groovy,
thisisthe most efficient
way for "reading" an xml
document.

In entity OHI Domain class The OHI domain class
that was constructed
from the entity that was
retrieved from the source
system.

The following sample Dynamic Logic sets the value of dynamic field 'field' that is defined in the
target system to the value of the dynamic field ‘anotherField' that is defined in the source system:

entity.field = xm Entity. @not herFi el d

Data Purging
Data purging capabilities are available to periodically clean up

OHI Components - Common Features Guide 83

ORACLE’

e Source Replication Events;

e Target Replication Events;

e Activities that were used to import changed entitiesin the target system and that completed
successfully;

e Activitiesthat were used to import changed entitiesin the target system, that completed with
errors, but that were not associated with any replication events yet (e.g. because it failed fast
when not all dynamic logic functions were properly configured).

In-line with existing data purging capabilities, the routine for cleaning up replication eventsis
implemented as a PL/SQL database operation:

rep_data_purge_pkg. purge_data
(p_purge_days_source in integer
, p_purge_days_target in integer

)

Theinput parameters define the retention period for the data expressed in days. The minimum
retention period is 30 days. A value smaller than 30 for any of the input parametersresultsin an
error.

The Operations Guide explains how to set up frequent and automated purging of technical data.

FIXME

Update page 9683-DSY

OHI Components - Common Features Guide 84

ORACLE’

6 User Interface Pages

I
6.1 Desktop Integration

By clicking the Edit in Excel button, it is possible to edit (insert, update or delete) rowsin Excel
using the ADF Desktop Integration functionality. This functionality is only available on selected
user interface pages.

6.1.1 Mock-up
AN) = SettingSheets sk - Microsoft Excel = | E |y
" Home Insert Page Layout Formulas Data Review View OHI Workbaok @ - = x
Il
[Delete Flagged Rows ®
Refresh Save About
Worksheet About
127 - e | ¥
B c D E F G H 1 K
[OIRACLE Health Insurance Value-Based Payments
| a
3 Code Display Name
| 4 ALDD20_3 2 RATES 3 Rate Sheet_3
I 5
s Status Messages [&1] *Provider <, Rate * Start Date End Date 3
| I TEST_ERR_01 100| 01/01/2012) 01/01/2013
| 8 TEST_ERR_01 140| 01/01/2012
| Row updated
[E successfully TEST_ERR_01 120| 02/01/2012
|10 Update failed TEST_ERR_011 150| 01/01/2012 L]
| Row inserted
|11 successfully TEST_ERR_01 200| 01/01/2012
| 12
13
14 -
H 4 b v | Sheetl ,Sheet2 ~'Sheetd . %J o Al I -0
Ready [EEEFtEe)) (s

6.1.2 OHI Workbook

The Excel sheet holds a separate OHI Workbook tab in the Excel header area. This tab includes
multiple buttons in the following sections:

* Worksheet
« About

6.1.2.1 Worksheet Section
The following buttons are available in this section:

¢ Refresh
e Save
¢ Delete Flagged Rows

6.1.2.1.1 Refresh

The refresh button cancels all changes entered in the Excel sheet since the last save action (after
user confirmation) and gets the current (saved) state from the database, based on certain search
criteria (specific for every page).

OHI Components - Common Features Guide 85

ORACLE’

6.1.2.1.2 Save

The save button uploads all rows with a checked Changed field (thisfield is explained in the
Columns chapter). When clicking the save button a dialog is opened with the following options:

Upload Options @

| On failure, continue to upload subsequent rows

Download all rows after successful upload

0K || Cancel

L

Continue Upload
This option is checked by default.

e If checked, the subsequent batches of rows will be committed (inserts and updates) if failures
occur in abatch of rows

e If unchecked, the subsequent batches of rows will not be committed (inserts and updates) if
failures occur in abatch of rows

Download Rows
This option is unchecked by defaullt.

e |f checked, all rows that meet the search criteria are downloaded after all rowswith a
checked Changed field have been successfully committed (inserts and updates)

« Therows are not downloaded if one or more failures occur

e If unchecked, the rows are not downloaded after all rows with a checked Changed field have
been committed (successfully or unsuccessfully)

6.1.2.1.3 Delete Flagged Rows

The delete flagged rows button deletes all rows with a checked Flagged field (thisfield is
explained in the Columns chapter).

6.1.2.2 About Section
The following button is available in this section: About.

6.1.2.2.1 About

When invoked, this action launches an About dialog that displays information about the OHI
application (name and version) and the specific workbook (name and function code). It also
displays technical information about the versions of supporting software and the properties.

OHI Components - Common Features Guide 86

ORACLE’

i B
TR e
About | Versions I Properties

Name Value
Application Name Oracle Health Insurance Value-Based Payments
Application Version 215.1.0.0
Workbook MName SettingSheets
Function Code ALDOO3
Copyright Copyright (C) 2009, 2015 Oracle andior itz affiliates. Al rights reserved.

6.1.3 Columns

The following types of columns are displayed (in specified order):

e Standard Desktop Integration Columns
e Page Specific Fixed Columns
¢ Page Specific Dynamic Columns

6.1.3.1 Standard
The following columns are displayed (in specified order):

¢ Changed
 Fagged

e Status

e Messages
6.1.3.1.1 Changed

Thisfield isused to indicate if arow will be committed (insert or update) when the Save button
in the OHI Workbook tab is clicked (as described in the OHI Workbook chapter).

¢ Thefieldisautomatically checked:
e For newly inserted rows
* For existing rows that are updated (if one or more of the Page Specific fields are
updated)
¢ Thefield can aso be manually checked or unchecked by the user by double-clicking on the
field

Note that if an existing row with a checked Changed field is committed, an update is performed
on the existing row in the application even if nothing changed on the row.

OHI Components - Common Features Guide 87

ORACLE’

6.1.3.1.2 Flagged

Thisfield isused to indicate if arow will be deleted when the Delete Flagged Rows button in the
OHI Workbook tab is clicked (as described in the OHI Workbook chapter).

e Thefield isunchecked for newly inserted rows
e Thefield can be manually checked or unchecked by the user by double-clicking on the field
¢ Note that the standard Excel method of simply deleting rows from the sheet is not supported

6.1.3.1.3 Status and Messages

These fields are used to show the results of commits after the Save or Delete Flagged Rows
button in the OHI Workbook tab is clicked (as described in the OHI Workbook chapter).

After committing, one of the following statuses can be displayed in the field:

¢ Row inserted successfully
¢ Row updated successfully
e Insertfailed

e Updatefailed

» Deletefailed

Successful Insert

The 'Row inserted successfully' status is displayed when a new row isinserted successfully.
Successful Update

The 'Row updated successfully' status is displayed when an existing row is updated successfully.
Failed Insert

The'Insert failed' statusis displayed when insert of a new row failed, because of errors on that
row. Double-clicking on the 'Messages field opens a V alidation Messages dialog where the error
messages are displayed (see below). Note that if the insert fails because of errorsin other rowsin
the batch (while on this row there are no errors) the status field is empty.

Failed Update

The 'Update failed' statusis displayed when update of an existing row failed, because of errors on
that row. Double-clicking on the '‘Messages field opens a Validation Messages dialog where the
error messages are displayed (see below). Note that If the update fails because of errorsin other
rows in the batch (while on this row there are no errors) the status field is empty.

Failed Delete

The'Delete failed' statusis displayed when delete of an existing row failed, because of errors on
that row. Double-clicking on the 'Messages field opens a Validation Messages dialog where the
error messages are displayed (see below). Note that if the delete fails because of errorsin other
rows in the batch (while on this row there are no errors) the statusfield is empty.

OHI Components - Common Features Guide 88

ORACLE’

£ —

Validation Messages
View -
Message
GEMN-TMVL-003: "End Date” should be later than or the same as “Start Date”™ for "Fee Schedule Ling™

Ok

6.1.3.2 Page Specific

Page specific fixed columns are the fixed fields columns that are specific for every page. Page
specific dynamic columns are the dynamic fields columns that are specific for every page.
Note that all dynamic fields that are configured for the applicable table (even the ones that are
configured to be in the overflow) are displayed as columns.

6.1.4 User Access

When the user clicks on the Edit in Excel button, Excel is opened and aLogin dialogis
prompted:

ORACLE" Health Insurance Value-Based Payments

Please Sign In

*Username zbajic

*Password SEEEE 88|

Sign In

Copyright (C) 2009, 2015 Orade and/for its affiiates. All rights reserved. Orade Health Insurance Value-Based Payments - ntautdb -

If the user enters valid credentials and the user has an access restriction grant with retrieve rights
for the specific function, the Excel sheet isloaded with all rows that meet the search criteria

6.1.5 Not Supported

Editing multiple sheets for the same page, at the same time and by the same user is not supported.
|

6.2 Sear ch Function

This page describes the different types of search that are available in Ul pages. It describes the
standard behavior, certain pages may have deviations from these standards.

By entering search criteria, the user can restrict the rows visible in a page to only the rows that

match these criteria. In general, pagesin OHI Claims support two search modes: the quick search
and the advanced search.

Both search modes can be used on top level data and child data. Take for example the Countries
page. Top level data consists of Countries. For each country, alist of Country Regionsis shown
in the lower section of the screen. Both the Country section and the Country Region section

OHI Components - Common Features Guide 89

ORACLE’

have their own quick- and advanced search capabilities. Searching for child datais alwaysin the
context of a current parent. For example: when US is selected as country in the upper part of the
screen, additional search criteria can restrict the Country Regions of country US to those that
match the criteria. It is never possible to search children of multiple parents.

6.2.1 Quick Search

Thisisthe default search mode - no additional action is needed to enable the quick search. It can
filter on only onefield. Thelist of availablefiltersislimited to fields that are visible as columns.

6.2.2 Advanced Search

Characteristics of Advanced Search:

e Itisaccessed by clicking on the "advanced search" link
e Cansearchonall itemsthat are available in the page: both items directly visible and itemsin

an inline overflow.

e Supports entering multiple search criteria at once. Multiple criteria are combined using the
AND operator. Only rows that match all entered criteria are shown.

¢ Performsonly asearch onitemsfor which a criteriais entered.
e After performing an advanced search, the page will return to quick search mode.

6.2.3 Search Types

Depending on the item type, a different type of search item is shown in the page. Also the search
operation performed depends on the item type. See table below.

values and empty value

Item Type Search Item Rendered | Search Valueto be Search Operation
entered performed

Numeric Input text Numeric constants item = search value

Date Input date (with Date constants item = search value
datapicker)

Boolean Drop down with values: | Select one of the options | if Yesor No selected:
- Empty item=search value.
-Yes no action otherwise.
-No

Domain Based Drop Down with domain | Select one of the options | if empty selected: no

action.
otherwise: item = search
value.

Normal aphanumeric
field. Seethefirst note
below

Startdate and Enddate

Input text

As of Datefield

Alphanumeric constants,
including wildcard.

Date constants

item like search value.

startDate <= search value
<= enddate

Information in this table applies to both quick and advanced search.

Searching on an alphanumeric field is case-insensitive, search value ABC will find
value Abc or abc.

Though like is the search operation for aphanumeric fields, the user hasto enter the
wildcard. So search value ABC will not find ABCD. Search value ABC% will.

OHI Components - Common Features Guide

90

ORACLE’

6.2.4 From/To Search

OHI Claims has an upper limit for the number of rows that can be shown at once. (Currently this
i5200). A user might want to see the next set of rows.

Example: the Countries page will show countries up to Suriname (SR). The user wants to see the
Countries that a phabetically come after Suriname. To facilitate this, From/To search items are
created for the descriptor item of a page. The descriptor item is the item that uniquely identifies
the row. For countries thisis the code. So for code two search items exist: Code From and Code
To. To retrieve the countries from Suriname onwards, the user has to enter SR in Code From and
leave Code To empty. From/To search is only available in Advanced Search.

OHI Components - Common Features Guide 1

	1 Data Model
	1.1 Activity and Data File Set Model
	1.1.1 Activity Model
	1.1.2 Data File Set Model

	1.2 Translation
	1.2.1 Concepts
	1.2.1.1 Supported languages
	1.2.1.2 Seed Data

	1.2.2 Use Cases
	1.2.2.1 Installation in English
	1.2.2.2 Installation in English and French
	1.2.2.3 Translation of Seed Data
	1.2.2.4 Translation of messages one by one
	1.2.2.5 Translation boilerplate entries one by one
	1.2.2.6 Bulk translation
	1.2.2.7 Reinstallation
	1.2.2.8 Creation of Business Data
	1.2.2.9 Translation of Business Data

	2 Integration Concepts
	2.1 Integrating with OHI Components Applications
	2.2 Auditing and Exception Handling

	3 Soap Integration Points
	3.1 Attribute Handling
	3.1.1 Single Value Attributes
	3.1.1.1 Amount and Currency

	3.1.2 Non Time Valid Details
	3.1.3 Time Valid Details
	3.1.3.1 Parent Record Creation
	3.1.3.2 Parent Record Update

	3.2 Dynamic Free Fields, Codes and Records
	3.2.1 Free Field Values
	3.2.2 Code Values
	3.2.3 Dynamic Records Values

	3.3 File Based Integration
	3.3.1 File Import Batch Processing Request
	3.3.1.1 Allowed characters for File Paths

	3.3.2 Response File and Process Completion Notification
	3.3.3 Interface Task Log

	3.4 Service Based Integration
	3.4.1 OHI Components Web Services
	3.4.1.1 Synchronous Message Processing
	3.4.1.2 Asynchronous Message Processing

	3.4.2 OHI Components as Web Service Client (outbound requests)
	3.4.2.1 Synchronous Message Processing
	3.4.2.2 Asynchronous Message Processing

	3.5 Interface Messages Log
	3.5.1 Result Messages
	3.5.2 Interface Messages Log
	3.5.2.1 Interface Message
	3.5.2.2 Interface Message Details

	3.5.3 Interface Messages Log UI page

	3.6 Data Set Operations Integration Point
	3.6.1 Operation Requests
	3.6.1.1 Stop Dequeue
	3.6.1.2 Start Dequeue
	3.6.1.3 Build Data Set
	3.6.1.4 Save to File
	3.6.1.5 Import From File
	3.6.1.6 Import From Environment

	3.6.2 Response File

	3.7 Result Messages
	3.7.1 Indicating Success or Failure
	3.7.2 Result Messages

	3.8 Integration Testing
	3.8.1 Environment for Prerequisite Services
	3.8.2 Environment for Operational Services

	3.9 Web Service Versioning
	3.9.1 Compatibility
	3.9.2 Flexible Versioning Strategy
	3.9.3 Resolving Version Conflicts across Releases

	4 HTTP API Integration Points
	4.1 HTTP API resources in an OHI Components application
	4.2 Attribute Handling
	4.2.1 Single Value Attributes
	4.2.1.1 Amount and Currency

	4.2.2 Details
	4.2.3 Dynamic Fields and Records
	4.2.3.1 Dynamic Fields
	4.2.3.2 Dynamic Records

	4.2.4 Errors

	4.3 Response Messages
	4.3.1 Indicating Success
	4.3.2 Links
	4.3.3 Pagination
	4.3.4 Indicating Failure
	4.3.5 Failure Result Messages

	4.4 Data File Set Integration Point
	4.4.1 Creating a data file set with one or more files in conversation mode
(multiple requests).
	4.4.1.1 Step 1: Create Data File Set
	4.4.1.2 Optional: Create data file set with a data file
	4.4.1.3 Step 3: Add data to Data File

	4.4.2 Creating a data file set with multiple files in a single request
	4.4.3 Other Available Operations
	4.4.3.1 Get defined data file sets in the system
	4.4.3.2 Get details of a data file set
	4.4.3.3 Get details of a data file
	4.4.3.4 Update details of a data file set
	4.4.3.5 Update details of a data file in a data file set
	4.4.3.6 Delete a data file set
	4.4.3.7 Delete a data file in a data file set

	4.4.4 Error Messages

	4.5 Activity Integration Point
	4.5.1 Conversation Parameter
	4.5.1.1 Error Messages
	4.5.1.2 Examples

	4.6 File Based Import
	4.6.1 Example : Provider Import
	4.6.1.1 Step 1: Create data file set with a data file
	4.6.1.2 Step 2: Upload Content
	4.6.1.3 Step 3: Initiate the Provider Import Activity using Create Activity
(/activities)
	4.6.1.4 Step 4: Start Provider Import Activity
	4.6.1.5 Step 6: Get result messages
	4.6.1.6 Step 7: Get response file

	4.7 Seed Data
	4.7.1 Activity Types
	4.7.2 Flex Code Field Usages
	4.7.2.1 Dynamic Record Definition FILE_IMPORT

	5 Integrating multiple OHI Applications
	5.1 Data Replication

	6 User Interface Pages
	6.1 Desktop Integration
	6.1.1 Mock-up
	6.1.2 OHI Workbook
	6.1.2.1 Worksheet Section
	6.1.2.2 About Section

	6.1.3 Columns
	6.1.3.1 Standard
	6.1.3.2 Page Specific

	6.1.4 User Access
	6.1.5 Not Supported

	6.2 Search Function
	6.2.1 Quick Search
	6.2.2 Advanced Search
	6.2.3 Search Types
	6.2.4 From/To Search

